Астродинамика


Астродинамика (от др.-греч. ἄστρον — «звезда» и δύναμις — сила) — раздел небесной механики, изучающий движение искусственных космических тел: искусственных спутников, межпланетных станций и других космических кораблей.

В сферу задач астродинамики входят расчёт орбит космических кораблей, определение параметров их запуска, вычисление изменений орбит в результате манёвров, планирование гравитационных манёвров и другие практические задачи. Результаты астродинамики используются при планировании и проведении любых космических миссий.

Астродинамика выделяется из небесной механики, которая изучает в первую очередь движение естественных космических тел под действием сил тяготения, своей ориентированностью на решение прикладных задач управления космическими кораблями. В связи с этим в астродинамике требуется учитывать и факторы, игнорируемые классической небесной механикой — влияние атмосферы и магнитного поля Земли, гравитационных аномалий, давления солнечного излучения и другие.

До начала космических путешествий в XX веке орбитальная и небесная механика не отличались друг от друга. В середине XX века, во времена первых искусственных спутников Земли, эта область называлась «космическая динамика»[1]. В обеих областях использовались одинаковые фундаментальные методы, такие как те, что используются для решения кеплеровой задачи (определение положения как функции времени).

Иоганн Кеплер был первым, кто успешно смоделировал планетарные орбиты с высокой степенью точности, опубликовав свои законы в 1605 году. Исаак Ньютон опубликовал более общие законы небесного движения в первом издании своего труда «Математические начала натуральной философии» (1687), в котором описан метод нахождения орбиты тела по трём наблюдениям[2]. Эдмунд Галлей использовал это для установления орбит различных комет, в том числе и той, что носит его имя. В 1744 году метод последовательного приближения Ньютона был формализован Эйлером в аналитический метод, а его работа была в свою очередь обобщена для эллиптических и гиперболических орбит Ламбертом в 1761—1777 годах.

Другой вехой в определении орбит было участие Карла Фридриха Гаусса в поиске «сбежавшей» карликовой планеты Церера в 1801 году. Метод Гаусса позволил использовать всего три наблюдения (в виде пар прямого восхождения и склонения), чтобы найти шесть элементов орбиты, которые полностью её описывают. Теория определения орбиты была впоследствии развита до такой степени, что сегодня она применяется в приемниках GPS, а также для отслеживания и каталогизации вновь обнаруженных малых планет. Современное определение и прогноз орбиты используются для работы со всеми типами спутников и космических зондов, поскольку их будущие позиции должны быть известны с высокой степенью точности.