Гальванотехника


Гальваноте́хника — раздел прикладной электрохимии, описывающий физические и электрохимические процессы, происходящие при осаждении катионов металла на каком-либо виде катода.

Также под гальванотехникой понимается набор технологических приёмов, режимных параметров и оборудования, применяемого при электрохимическом осаждении каких-либо металлов на заданной подложке.

Гальванотехника подразделяется на гальваностегию и гальванопластику. Гальванопластика — процесс осаждения металла на форме, позволяющий создавать идеальные копии исходного предмета.

Гальванопластику в 1838 году открыл российский физик Борис Якоби, брат математика Карла Якоби. Первым изделием, полученным с помощью гальванотехники, стала монета. Якоби сначала использовал монету для получения матрицы-негатива, а с неё создал копию, находящейся в обороте, монеты. Осознав, что он открыл новый метод фальшивомонетничества, учёный уничтожил полученное изделие[3]. Технология быстро распространилась в Российской империи. В частности, таким способом были созданы скульптуры на нефах Исаакиевского собора в Санкт-Петербурге (см. рисунок). Борис Семёнович получил за своё открытие Демидовскую премию и большую золотую медаль Парижской выставки.

Теория гальванотехники базируется на существующих представлениях о составе и свойствах электролитов, в частности, о диссоциации соединений на заряженные катионы и анионы, о способности катионов двигаться под действием внешнего электрического поля и восстанавливаться до металла, принимая электроны. В то же время практика гальванотехники требует формирования в результате протекающих физико-химических процессов сплошного равномерного металлического слоя на поверхности подложки, а этот результат определяется прежде всего накопленным опытом использования различных электролитов, проводящих грунтов, пред- и постобработок изделий и электролитов, подбора оптимальных составов и концентраций, значений плотностей тока и выравнивания этих плотностей по всей поверхности изделия.

Теоретический материальный баланс гальванического процесса может быть определён по закону Фарадея. Однако, фактический выход по току осаждаемого металла всегда оказывается меньше теоретически предсказанного. Отчасти это связано с тем, что в электролите всегда присутствуют посторонние катионы, которые имеют иные отношения заряда к массе (например, примесь ионов серебра в растворе медного купороса) или не оседают на катоде, а выводятся из электролита при восстановлении (например, H+). Оказывает своё влияние конечность скоростей движения ионов в электролите (потери на нагрев электролита), диффузионные явления, перемешивание электролита за счёт вибрационных, конвективных и иных механических воздействий.