Голография


Гологра́фия — метод регистрации информации, основанный на интерференции волн[1]. Опти́ческая гологра́фия — разновидность голографии, в которой записывается световое поле, создаваемое оптическим излучением. Это осуществимо при регистрации картины стоячих волн, образованных в результате интерференции между когерентными пучками света, излучённого источником и отражённого от объекта[2]. Изображение, получаемое с помощью голографии, называется гологра́мма, и считается наиболее точным автостереоскопическим воспроизведением зрительного впечатления, производимого снятыми объектами. При этом сохраняется ощущение глубины пространства и многоракурсность, а изображение выглядит, как вид на снятый предмет через окно, которым служит голограмма[3].

Принципиальным отличием голографии от всех остальных способов регистрации изображения является распределённость информации о всех снятых объектах на поверхности всего датчика, такого, например, как фотопластинка. Поэтому повреждение голограммы, ведущее к уменьшению её площади, не приводит к потере части изображения[4][5]. Каждый осколок разбитой на несколько частей фотопластинки с голограммой продолжает содержать изображение всех снятых объектов[6]. Уменьшается только количество доступных ракурсов, а изображение на слишком мелких осколках утрачивает стереоскопичность и чёткость.

Несмотря на совершенство получаемого изображения, голография не смогла заменить традиционную стереофотографию. Из-за особенностей технологии съёмка очень сложна и возможна только в лабораторных условиях при освещении лазером[7]. Голография нашла применение в спектроскопии, фотограмметрии, микроскопии и голографической интерферометрии, а также в деле записи информации и создании защитных приспособлений для документов. Оптические элементы (например, дифракционные линзы), сгенерированные с помощью компьютерной голографии, широко используются в современных оптических приборах[8][9].

Математическая теория голографии появилась значительно раньше её практической реализации и стала неожиданным результатом работ британского физика венгерского происхождения Денеша Габора по совершенствованию рентгеновской микроскопии. Эти исследования, начатые задолго до Габора Мечиславом Вольфке и Уильямом Брэггом, имели целью совершенствование просвечивающего электронного микроскопа[10]. Технология Габора, в 1947 году запатентованная компанией British Thomson-Houston, получила название «электронная голография», и до настоящего времени используется в электронной микроскопии. «За изобретение и развитие голографического принципа» Денеш Габор в 1971 году получил Нобелевскую премию по физике. Его первые голограммы, изготовленные с помощью ртутной дуговой лампы, отличались крайне низким качеством из-за недостаточной когерентности излучения[5]. Развитие оптической голографии стало возможно только после изобретения лазера в 1960 году[1].