Гравитационный манёвр


Гравитацио́нный манёвр, реже пертурбацио́нный манёвр, — целенаправленное изменение траектории и скорости полёта космического аппарата под действием гравитационных полей небесных тел.

Впервые успешно осуществлён в 1959 году советской автоматической межпланетной станцией (АМС) Луна-3. Часто используется для разгона автоматических межпланетных станций, отправляемых к отдалённым объектам Солнечной системы и за её пределы, с целью экономии топлива и сокращения времени полёта. В таком применении известен также под названием «гравитационная праща» (от англ. gravitational slingshot). Может использоваться и для замедления космического аппарата[⇨], а в некоторых случаях наиболее важное значение имеет изменение направления его движения[⇨]. Наиболее эффективны гравитационные манёвры у планет-гигантов, но нередко используются манёвры у Венеры, Земли, Марса и даже Луны.

Гравитационный манёвр подразумевает сближение совершающего орбитальный космический полёт аппарата с достаточно массивным небесным телом (планетой или спутником планеты), обращающимся вокруг того же центра масс (звезды или планеты, соответственно). Например, в окрестностях Земли можно выполнить гравитационный манёвр путём сближения с Луной, а при полётах в пределах Солнечной системы возможны гравитационные манёвры около обращающихся вокруг Солнца планет[1].

В упрощённом представлении[Комм. 1] гравитационный манёвр около одной из планет Солнечной системы выглядит следующим образом: космический аппарат входит в сферу действия планеты[Комм. 2], имея скорость vвх относительно планеты. Эта скорость определяется разностью[Комм. 3] скоростей движения аппарата Vвх и планеты Vпл относительно Солнца (см. треугольник 1 на иллюстрации). В планетоцентрической системе координат космический аппарат совершает облёт планеты по гиперболической траектории и со скоростью vвых покидает её сферу действия. При этом скорости vвх и vвых равны по модулю, но имеют разное направление, отличающееся на угол φ. После выхода аппарата из сферы действия планеты, его гелиоцентрическая скорость Vвых является суммой скоростей Vпл и vвых (см. треугольник 2). Обозначенная как ΔV разность скоростей Vвых и Vвх (см. фигуру 3) называется приращением скорости[Комм. 4] и является результатом гравитационного манёвра.

Приращение скорости зависит не от скорости орбитального движения планеты, а от относительной скорости сближения vвх, массы планеты и прицельной дальности[Комм. 5] b — чем ближе к планете пройдёт траектория космического аппарата, тем больше будет угол отклонения φ и значительнее приращение скорости. Минимальное расстояние ограничено необходимостью избегать контакта космического аппарата с планетой (включая её атмосферу, при наличии таковой).