Графен


Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp²-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость слоистого графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью[4] и рекордно большой теплопроводностью[5]. Высокая подвижность носителей заряда, которая оказывается максимальной среди всех известных материалов (при той же толщине), делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники[6] и возможную замену кремния в интегральных микросхемах.

Один из существующих в настоящее время способов получения графена в условиях научных лабораторий[7][8] основан на механическом отщеплении или отшелушивании слоёв графита от высокоориентированного пиролитического графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другие известные способы — метод термического разложения подложки карбида кремния[9][10] и xимическое осаждение из газовой фазы — гораздо ближе к промышленному производству. С 2010 года доступны листы графена метрового размера, выращенные с помощью последнего метода[11].

Из-за особенностей энергетического спектра носителей графен проявляет специфические[12], в отличие от других двумерных систем, электрофизические свойства. Графен был первым полученным элементарным двумерным кристаллом, но впоследствии были получены другие материалы силицен, фосфорен, германен.

За «передовые опыты с двумерным материалом — графеном» Андрею Гейму и Константину Новосёлову была присуждена Нобелевская премия по физике за 2010 год[13][14]. В 2013 году Михаил Кацнельсон награждён премией Спинозы за разработку базовой концепции и понятий, которыми оперирует наука в области графена[15].

Графен — первый известный истинно двумерный кристалл[1]. В отличие от более ранних попыток создания двумерных проводящих слоёв, к примеру, двумерный электронный газ (ДЭГ), из полупроводников методом управления шириной запрещённой зоны, электроны в графене локализованы в плоскости гораздо сильнее.


Рис. 1. Идеальная кристаллическая структура графена представляет собой гексагональную кристаллическую решётку
Рис. 2. Слои интеркалированного графита можно легко отделить друг от друга[33]
Рис. 3. Изображение гексагональной решётки графена. Жёлтым цветом показана элементарная ячейка, красным и зелёным цветами показаны узлы различных подрешёток кристалла. e1 и e2 — вектора трансляций
Рис. 4: Ближайшие атомы в окружении центрального узла (A) решётки. Красная пунктирная окружность соответствует ближайшим соседям из той же самой подрешётки кристалла (A), а зелёная окружность соответствует атомам из второй подрешётки кристалла (B)
Рис. 5. Изолинии постоянной энергии (формула (2.4)). Жирный чёрный шестиугольник — первая зона Бриллюэна. Показаны также красные окружности на краях первой зоны Бриллюэна, где закон дисперсии носителей линеен. K и K' обозначают две долины в k-пространстве с неэквивалентными волновыми векторами
Рис. 6. a) Квантовый эффект Холла в обычной двумерной системе. b) Квантовый эффект Холла в графене.  — вырождение спектра
Рис. 7. Для получения нанотрубки (n, m) графитовую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R. При сворачивании однослойного графена в цилиндр получается одностенная нанотрубка. В зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут обладать или металлическими, или полупроводниковыми свойствами[79].