Диод Ганна


Дио́д Га́нна — тип полупроводниковых диодов, не имеющих в структуре p-n-переходов, используется для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц. Основан на эффекте Ганна — явлении осцилляций тока в многодолинном проводнике при приложении к нему сильного электрического поля, открытом Джоном Ганном в 1963 году.

В отличие от других типов диодов принцип действия диода Ганна основан не на процессах в p-n-переходе, то есть все его свойства определяются не эффектами, которые возникают в местах соединения двух различных полупроводников, а собственными нелинейными свойствами применяемого полупроводникового материала.

В советской литературе диоды Ганна называли приборами с объёмной неустойчивостью или с междолинным переносом электронов, так как активные свойства диодов обусловлены переходом электронов из «центральной» энергетической долины (минимума энергии) в «боковую» долину, где они уже имеют малую подвижность и большую эффективную массу. В иностранной литературе диод Ганна называют TED (Transferred Electron Device — прибор с переносом электронов).

На основе эффекта Ганна созданы генераторные и усилительные диоды, применяемые в качестве генераторов накачки в параметрических усилителях, гетеродинов в супергетеродинных приемниках, генераторов в маломощных передатчиках и в измерительной технике.

Диод Ганна традиционно представляет собой прямоугольную пластинку из арсенида галлия с омическими контактами с противоположных граней сторон. Активная часть диода Ганна — длина высокоомного слоя обычно имеет длину от 1 до 100 мкм с концентраций легирующих донорных примесей 1014—1016 см−3. В этом материале, в зоне проводимости, имеются два минимума энергии, которым соответствуют два состояния электронов — так называемые «тяжёлые» и «лёгкие» электроны. Поэтому с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, однородное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, так как менее подвижны, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения.