Железосерные кластеры


Железосерные кластеры (также Fe—S-кластеры) — элементоорганические соединения, группа белковых кофакторов, обладающих окислительно-восстановительным (Red/Ox) потенциалом в районе от −500 мВ до +300 мВ[1]. Red/Ox-потенциал зависит от структуры и конформации белка, что делает эти кофакторы важнейшими участниками окислительно-восстановительных реакций в клетке. Железосерные кластеры способны принимать или отдавать электроны (см. рисунок). Белки, содержащие железосерные кластеры, являются эволюционно древними и распространены во всех царствах, включая животных, растения, грибы, бактерии и археи. Мутации по генам метаболизма Fe—S-кластеров являются причиной многих тяжёлых заболеваний или летальны.

На начальном этапе развития жизни Земля имела восстановительную атмосферу, отсутствовал кислород, вулканическая активность сопровождалась выбросами сероводорода, а в океане было растворено значительное количество двухвалентного железа. Как будет раскрыто ниже, из элементов именно в этих (Fe2+ и S2−) степенях окисления синтезируются новые железосерные кластеры в клетках живых организмов[3]. Предположительно, неорганические структуры, подобные железосерным кластерам, образовывались в таких условиях спонтанно, а древние живые организмы приспособили данные структуры, включив их в состав белковых молекул[4].

Способность переносить электроны у образовавшихся белков оказалась тесно связанной с обменом энергии в клетках, поэтому эти ферменты продолжали эволюционировать, и их гены закрепились во всех живых организмах.

Модельными организмами для изучения синтеза и передачи железосерных кластеров в клетке являются дрожжи S. cerevisiae, кишечная палочка (E. coli), сенная палочка (B. subtilis), резуховидка Таля (A. thaliana) и многие другие организмы; исследуются эти процессы и на клетках человека.

Для бактериальных организмов известно три системы белков, участвующих в синтезе железосерных кластеров[3]:

В качестве основного модельного организма для описания выберем дрожжи (S. cerevisiae), это необходимо, чтобы не создавать путаницу в названиях белков, гомологи которых в разных организмах называются по-разному.