Жидкий кислород


Жи́дкий кислоро́д (ЖК, жO2, LOX[1]) — жидкость бледно-синего цвета, которая относится к сильным парамагнетикам. Является одним из четырёх агрегатных состояний кислорода. Жидкий кислород обладает плотностью 1141 кг/м³ (1,141 кг/л) (при температуре кипения) и имеет умеренно криогенные свойства с точкой замерзания 54,36 K (−218,79 °C) и точкой кипения 90,188 K (−182,96 °C).

Жидкий кислород активно применяется в космической и газовой отраслях, при эксплуатации подводных лодок, широко используется в медицине. Обычно промышленное получение основывается на фракционной перегонке воздуха. Коэффициент расширения кислорода при смене жидкого агрегатного состояния на газообразное составляет 860:1 при 20 °C, что иногда используется в системах снабжения кислородом для дыхания в коммерческих и военных самолётах — кислород хранится в жидком состоянии в малом объёме, а при необходимости использования испаряется с образованием большого объёма газообразного кислорода.

Основным и практически неисчерпаемым источником получения жидкого кислорода является атмосферный воздух: производится сжижение воздуха и последующее разделение его на кислород и азот.

Из-за своей очень низкой температуры жидкий кислород может вызвать хрупкость материалов, которые соприкасаются с ним.

Плотность жидкого кислорода существенно увеличивается при снижении температуры — с 1140 кг/м³ при 90 К до 1330 при 50 К. Это свойство иногда используется в ракетно-космической технике для увеличения заправки баков ракет — без изменения размеров баков в них можно залить на 10—15 % больше переохлажденного жидкого кислорода, чем кипящего. Впервые это было применено на советских баллистических ракетах Р-9.

Для объяснения отклонения парамагнетических свойств жидкого кислорода от закона Кюри американским физикохимиком Г. Льюисом в 1924 году была предложена молекула тетракислорода (O4).[2] На сегодняшний день теория Льюиса считается лишь частично верной: компьютерное моделирование показывает, что хотя в жидком кислороде не образуется устойчивых молекул O4[3], молекулы O2 на самом деле имеют тенденцию объединяться в пары с противоположными спинами, которые образуют временные объединения O2—O2[3].