Интегральное исчисление


Интегральное исчисление — раздел математического анализа, в котором изучаются интеграл, его свойства и методы вычислений[1].

В сочинении Архимеда «Об измерении длины окружности» рассматривается вопрос об определении площади и длины окружности круга, а в трактате «О шаре и цилиндре» — о поверхностях и объёмах тел, ограниченных кривыми поверхностями; эти вопросы представляют первые геометрические задачи, относящиеся к исчислению. И в настоящее время основной задачей исчисления является нахождение площадей криволинейных фигур. Под площадью криволинейной фигуры (черт. 1) подразумевается предел, к которому стремится площадь вписанного в фигуру многоугольника по мере увеличения числа его сторон, причём эти стороны могут быть сделаны меньше всякого заранее заданного произвольно малого числа.

Основная идея вычисления площади произвольных геометрических фигур состоит в следующем. Для начала, как посчитать площадь прямоугольника, то есть как доказать, что его площадь — это произведение длины на ширину. Если речь идёт о геометрии, где все построения нужно делать с помощью циркуля и линейки, то в такой геометрии отношение длины к ширине есть число рациональное (см. Учебник Погорелова), то есть если длину принять за единицу, то ширина может быть выражена в качестве дроби , где и натуральные числа. Для такого прямоугольника можно подобрать такой «единичный квадратик», который полностью покроет такой прямоугольник. Сторону «единичный квадратик» можно подобрать как d = НОД(mn), где  — натуральное число. Например, если мы имеем прямоугольник длиной 10 см и шириной 14 см, то такой прямоугольник может быть построен при помощи циркуля и линейки (если длину принять за единицы, его ширина будет 14 / 10 = 7/5). В качестве стороны «единичного квадратика» можно взять d = НОД(14, 10) = 2 см. Этот квадратик войдёт 5 раз в длину и 7 в ширину, всего нужно 5 × 7 = 35 таких «единичных квадратиков». Можно взять квадраты со стороной 1 см. Этот квадратик войдёт 10 раз в длину и 14 в ширину, всего нужно 10 × 14 = 140 таких «единичных квадратиков». Из этого построения видно, что размерность (см.) не играет никакой существенной роли при таком построении.