Интуиционизм


Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.

В интуиционистской математике отвергается подход классической теории множеств (в частности, не принимаются аксиома выбора и аксиома регулярности) и ряд рассуждений классической логики. Абстракция потенциальной осуществимости, которая используется в интуиционистской математике, лучше соотносится с действительностью, чем абстракция актуальной бесконечности.

Критика теории множеств привела к возникновению трёх течений: интуиционизма Лёйтзена Эгберта Яна Брауэра, формализма Давида Гильберта и логицизма Готлоба Фреге, Бертрана Рассела, Альфреда Норта Уайтхеда. В 1904 году Брауэр подверг развёрнутой критике ряд концепций классической математики. Его внимание привлёк статус существования: можно ли потенциально построить такие объекты исследования, как неизмеримое множество действительных чисел, нигде не дифференцируемая функция? Можно ли полагать, что в окружающем мире существуют бесконечные множества объектов[1]?

Интуиционистская математика в трактовке Брауэра — это убедительность мысленных построений, не связанная вопросом существования объектов. Другая трактовка — это «наглядная умственная убедительность простейших конструктивных процессов реальной действительности». Брауэр возражал против формализации интуиционизма[1].

Аренд Гейтинг сформулировал интуиционистское исчисление предикатов и интуиционистское арифметическое исчисление, Альфредом Тарским была открыта топологическая интерпретация, а Андреем Николаевичем Колмогоровым — интерпретация в виде исчисления задач. Понимание в форме рекурсивной реализуемости было предложено Стивеном Коулом Клини и поддержано научной школой Андрея Андреевича Маркова. К 70-м годам XX века было завершено построение теории свободно становящихся последовательностей[1].

В интуиционистской математике суждение считается истинным, только если его можно доказать некоторым «мысленным экспериментом». То есть истинность утверждения «Существует объект x, для которого верно суждение A(x)» доказывается построением такого объекта, а истинность утверждения «A или B» доказывается либо доказательством истинности утверждения A, либо доказательством истинности утверждения B. Отсюда, в частности, следует, что утверждение «A или не A» может быть не истинным, а закон исключённого третьего неприемлем. Истинным математическим суждением является ряд выполненных построений эффективного характера с использованием интуиционистской логики. Эффективность не обязательно связана с наличием алгоритма и может зависеть от физических и исторических факторов, фактического решения проблем[1].