Квадрика


Ква́дрика, или квадри́ка,  — n-мерная гиперповерхность в n+1-мерном пространстве, заданная как множество нулей многочлена второй степени. Если ввести координаты {x1, x2, ..., xn+1} евклидовом или аффинном пространстве), общее уравнение квадрики имеет вид[1]

где x = {x1, x2, ..., xn+1} — вектор-строка, xT — транспонированный вектор, Q — матрица размера (n+1)×(n+1) (предполагается, что хотя бы один её элемент ненулевой), P — вектор-строка, а R — константа. Наиболее часто рассматривают квадрики над действительными или комплексными числами. Определение можно распространить на квадрики в проективном пространстве, см. ниже.

Более общо, множество нулей системы полиномиальных уравнений известно как алгебраическое многообразие. Таким образом, квадрика является (аффинным или проективным) алгебраическим многообразием второй степени и коразмерности 1.

Квадрики на евклидовой плоскости соответствуют случаю n = 1, то есть являются кривыми. Обычно их называют не квадриками, а кониками или коническими сечениями.

Квадрики в (трёхмерном действительном) евклидовом пространстве имеют размерность n = 2 и называются поверхностями второго порядка. Проведя ортогональную замену базиса, любую квадрику в евклидовом пространстве можно привести к нормальной форме. В трёхмерном евклидовом пространстве существует 17 таких форм.[2]Из них 5 являются невырожденными (то есть матрица является невырожденной[3]). Вырожденные формы включают в себя плоскости, прямые, точки и даже квадрики без действительных точек.[4]