Мезоскопическая физика


Мезоскопи́ческая фи́зика (мезоско́пика[1]; от др.-греч. mesos – промежуточный и англ. scoрe – сфера действия[2]) — раздел физики конденсированных сред, в котором рассматриваются свойства систем на масштабах промежуточных между макроскопическим и микроскопическим. Термин ввёл в 1981 году датский физик Ван Кампен[англ.][3][К 1]. Многие законы, полученные в макроскопической физике, неприменимы в области мезоскопических размеров, например последовательно соединённые сопротивления нельзя вычислить суммированием отдельных сопротивлений, а следует учитывать квантовые эффекты. Именно мезоскопические размеры накладывают ограничения на классический транспорт в полупроводниках[3]. Мезоскопика возникла в 80-х годах XX века как ответ на технологический прогресс микро- и нанолитографии, роста монокристаллов, а также инструментов типа сканирующего туннельного микроскопа, позволяющего проводить измерения на атомарном уровне[4].

Под микроскопическим масштабом понимают размеры, сравнимые с размерами одного атома или с длиной одной химической связи, то есть с боровским радиусом. Под макроскопическим понимают масштаб, при котором из-за неупругих столкновений теряется квантовая когерентность или фазовая когерентность — то есть становится невозможной интерференция траекторий частиц. Это происходит из-за неупругих столкновений носителей, например при рассеянии на фононах или точечных дефектов, что сбивают фазу волновой функции. Этот размер характеризуется длиной сбоя фазы и играет роль характерного масштаба при рассмотрении эффектов, которые приводят к поправкам к проводимости, где важна интерференция, таким как слабая локализация[⇨], универсальные флуктуации проводимости[⇨], эффект Ааронова — Бома[⇨]. Одна из задач мезоскопики заключается в учёте таких интерференционных членов в проводимости макроскопических образцов[5].

С точки зрения транспорта в структурах под микроскопическим масштабом следует понимать всякий размер меньше длины свободного пробега носителей тока. Стоит учитывать, что если система обладает макроскопической когерентностью, то это тоже мезоскопическая система, как в случае сверхпроводников[6]. Топологически защищённые состояния, как в случае квантового эффекта Холла, которые можно наблюдать даже при комнатной температуре в графене, тоже мезоскопическая система. Соответственно, мезоскопическая физика изучает явления сильной и слабой локализации, туннелирования и прыжковой проводимости. Мезоскопическими являются такие системы, свойства которых определяются поведением одной квазичастицы[7].

Границы макроскопической области существенно зависят от температуры и характера движения частиц (является ли он баллистическим или диффузионным[⇨]).