Металлический водород


Металли́ческий водоро́д — совокупность фазовых состояний водорода, находящегося при крайне высоком давлении и претерпевшего фазовый переход. Металлический водород представляет собой вырожденное состояние вещества и, по некоторым предположениям, может обладать некоторыми специфическими свойствами — высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.

В 1930-х годах британский ученый Джон Бернал предположил, что атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов, может оказаться стабильным при высоких давлениях[1]. В 1935 году Юджин Вигнер и Хиллард Белл Хантингтон провели соответствующие расчёты. Гипотеза Бернала нашла подтверждение — согласно полученным расчётам, молекулярный водород переходит в атомарную металлическую фазу при давлении около 250 тысяч атмосфер (25 ГПа) со значительным увеличением плотности[2]. В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведётся теоретически. Под руководством академика Л. Ф. Верещагина впервые в мире был получен металлический водород, сообщение об этом было опубликовано в 1975 году[3]. Опыт был повторен неоднократно, при высоких давлениях (при 304 ГПа) и низких температурах (до 4,2 К) водород приобретал электропроводность (уменьшалось сопротивление не менее, чем в 1 миллион раз); при нагреве образца и понижении давления водород принимал прежние свойства. Также по этой теме встречались сообщения в 1996, 2008 и 2011 годах, пока в 2017 году профессор Айзек Сильвера и его коллега Ранга Диас[en] не добились получения стабильного образца при давлении 5 миллионов атмосфер[4][5][1], однако камера, где хранился образец, под давлением разрушилась, и образец был потерян.

Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов — Юпитера, Сатурна — и крупных экзопланет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода.

При увеличении внешнего давления до десятков ГПа коллектив атомов водорода начинает проявлять металлические свойства. Ядра водорода (протоны) сближаются друг с другом существенно ближе боровского радиуса, на расстояние, сравнимое с длиной волны де Бройля электронов. Таким образом, сила связи электрона с ядром становится нелокализованной, электроны слабо связываются с протонами и формируют свободный электронный газ так же, как в металлах.