Микроволновое излучение


Микроволновое излучение (микроволны) — область спектра электромагнитного излучения с длинами волн от 1 м до 1 мм, соответствующими частотам от 300 МГц и до 300 ГГц соответственно[1][2][3][4][5]. Различные источники используют разные диапазоны частот для микроволн; вышеупомянутое широкое определение включает диапазоны: УВЧ (дециметровые волны), СВЧ (сантиметровые волны) и КВЧ (миллиметровые волны). Более распространённое определение в радиотехнике — диапазон от 1 до 100 ГГц (длины волн от 0,3 м до 3 мм). Частоты микроволнового излучения часто обозначаются терминами IEEE для радиолокационных диапазонов: S, C, X, Ku, K или Ka диапазон или аналогичными обозначениями НАТО или ЕС.

Приставка микро- в словосочетании микроволновое излучение не предназначено для определения длины волны в микрометровом диапазоне. Скорее, это указывает на то, что микроволны «маленькие» (с более короткими длинами волн) по сравнению с радиоволнами, которые использовались до распространения микроволновой технологии. Границы между дальним инфракрасным диапазоном, областью терагерцового излучения, микроволнами и дециметровых радиоволн достаточно произвольна и используется по-разному в различных областях науки и технологии.

Микроволны распространяются в пределах прямой видимости; в отличие от низкочастотных радиоволн, они не дифрагируют вокруг холмов, не следуют за земной поверхностью, как поверхностные волны, и не отражаются от ионосферы, поэтому наземные микроволновые каналы связи ограничены визуальным горизонтом примерно до 64 км. В верхней части диапазона они поглощаются газами в атмосфере, ограничивая практическое расстояние связи примерно до километра. Микроволны широко используются в современных технологиях, например, в линиях связи точка-точка, беспроводных сетях, микроволновых радиорелейных сетях, радарах, спутниковой и космической связи, медицинской диатермии и лечении рака, дистанционном зондировании Земли, радиоастрономии, ускорителях частиц, спектроскопии, промышленном отоплении, системах предотвращения столкновений, устройствах открывания гаражных ворот и системы входа без ключа, а также для приготовления пищи в микроволновых печах.

Микроволновое излучение большой интенсивности используется для бесконтактного нагрева тел (в бытовых микроволновых печах — для разогрева продуктов, в промышленных — для термообработки металлов, в хирургии — при радиочастотной абляции вен[6]; основным элементом здесь служит магнетрон), а также для радиолокации.

Микроволны занимают область в электромагнитном спектре с частотой выше обычных радиоволн и ниже инфракрасного света:

В описаниях электромагнитного спектра некоторые источники классифицируют микроволны как радиоволны, подмножество диапазона радиоволн; в то время как другие классифицируют микроволны и радиоволны как отдельные типы излучения. Это распространённое различие.


Некоторые из тарелочных антенн радиотелескопа Atacama Large Millimeter Array (ALMA), расположенного на севере Чили. Он детекрирует микроволны в диапазоне миллиметровых волн, 31—1000 ГГц.
Карты космического микроволнового фонового излучения, демонстрирующие улучшенное разрешение, которое было достигнуто с помощью более совершенных микроволновых радиотелескопов.
Рупорная антенна C-диапазона в телефонном коммутационном центре в Сиэтле, принадлежащем сети микроволновых ретрансляторов Long Lines компании AT&T, построенной в 1960-х годах.
Линзовая микроволновая антенна, используемая в радаре для зенитной ракеты Nike Ajax 1954 года.
Первая коммерческая микроволновая печь, Amana's Radarange, на кухне американского авианосца Саванна в 1961 году.
СВЧ-генератор, состоящий из диода Ганна внутри объёмного резонатора, 1970-е годы.
Современный радар для измерения скорости. На правом конце медной рупорной антенны находится диод Ганна (серая сборка), который генерирует микроволны.