Принцип неопределённости


Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей).

Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Соотношение неопределённостей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней физической квантовой механики[1][2]. Является следствием принципа корпускулярно-волнового дуализма[3][4].

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих операторов наблюдаемых величин. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений[* 2].

Согласно принципу неопределённости, у частицы не могут быть одновременно точно измерены положение и скорость (импульс)[* 3]. Принцип неопределённости уже в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда не реализуется ни одна из двух крайних ситуаций (полностью определённый импульс и полностью неопределённая пространственная координата или полностью неопределённый импульс и полностью определённая координата).

Пример: частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; она не характеризуется ни определённым значением импульса (учитывая его направление![* 4]), ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована в пределах всего пространства коробки, то есть её координаты не имеют определённого значения, локализация частицы осуществлена не точнее размеров коробки).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).