Радиоизотопные источники энергии


Радиоизото́пные исто́чники эне́ргии — устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.

Радиоизотопный источник энергии принципиально отличается от атомного реактора тем, что в нём используется не управляемая цепная ядерная реакция, а энергия естественного распада радиоактивных изотопов.

Источником тепла или топливом радиоизотопных источников тока являются достаточно короткоживущие радиоактивные изотопы различных химических элементов. Основными требованиями к изотопам и, соответственно, к источникам тепла изготовленных из них соединений и сплавов являются: достаточно большой период полураспада, безопасность в обращении и эксплуатации (желательно отсутствие проникающих излучений: жёсткого гамма-излучения и нейтронов), высокая температура плавления сплавов и соединений, большое удельное энерговыделение, а для изотопов, способных к делению, также и возможно бо́льшая критическая масса. Очень важное место при выборе рабочего изотопа играет образование дочернего изотопа, способного к значительному тепловыделению, так как цепь ядерного преобразования при распаде удлиняется и соответственно возрастает общая энергия, которую можно использовать. Наилучшим примером изотопа с длинной цепью распада и с энерговыделением на порядок бо́льшим, чем у большинства других изотопов, является уран-232. Недостатком его является то, что входящий в его радиоактивный ряд таллий-208 испускает очень жёсткое гамма-излучение (2,614 МэВ), которое сложно экранировать. Известно более 3000 радиоизотопов, но лишь немногие подходят на роль источников тепла в радиоизотопных генераторах. Изотопы, наиболее часто используемые для радиоизотопных источников энергии в настоящее[когда?] время, перечислены в следующей таблице:

Следует отметить то обстоятельство, что выбор изотопного источника тепла прежде всего определяется диапазоном выполняемых энергоисточником задач и временем выполнения этих задач. Огромным недостатком радиоизотопов является то обстоятельство, что их энерговыделение невозможно регулировать (остановить или ускорить), можно лишь отсекать поток тепла от преобразователей.