Статистическая механика


Статистическая механика или статистическая термодинамика — это механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными[1]. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году[2]. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.

Принципы термодинамики, являющиеся результатом обобщения и абстрагирования некоторых эмпирических данных, выражают приблизительные свойства и вероятностное поведение макроскопических систем, состоящих из очень большого числа микроскопических компонентов: молекул и атомов. Законы классической механики позволяют в принципе в любое время полностью определить состояние системы, состоящей из нескольких компонентов, если известны взаимодействия (силы), а также состояние системы (координаты и импульсы компонентов) в предыдущий момент. Однако на практике начальные условия неизвестны, и на сложность вычислений влияют интегрирование уравнений движения для очень большого числа компонентов. Как правило, число молекул в макроскопической массе газа при стандартных условиях имеет порядок величины равный числу Авогадро, то есть порядка 1023, что делает невозможным определение его механического (микроскопического) состояния. С другой стороны, опыт показывает, что термодинамические (макроскопические) свойства одной и той же массы газа полностью определяются только двумя параметрами (например, достаточно знать свободную энергию как функцию объема и температуры) и один из них (в данном случае температура) не имеет механического характера. Связь между этими двумя параметрами, казалось бы, противоречивыми точками зрения достигается статистическими методами.


Трактат об Элементарных принципах статистической механики, опубликованный Гиббсом в 1902 году, представляет собой «рациональное обоснование термодинамики».
Могила Больцмана на Центральном кладбище в Вене, с формулой S = k. log W выгравировано выше.
Сравнение статистики Ферми — Дирака, Бозе — Эйнштейна и Максвелла — Больцмана