Теорема


Теоре́ма — (др.-греч. Θεώρημα, от др.-греч. Θεώρηώ — рассуждаю[2]) математическое утверждение, истинность которого установлена путём доказательства. Доказательства теорем опираются на ранее доказанные теоремы и общепризнанные утверждения (аксиомы)[3].

Теорема является логическим следствием аксиом. Доказательство математической теоремы является логическим аргументом для утверждения теоремы, приведенного в соответствии с правилами формальной системы. Доказательство теоремы часто интерпретируется как обоснование истинности утверждения теоремы. В свете требования, чтобы теоремы были доказаны, концепция теоремы является принципиально дедуктивной, в отличие от понятия научного закона, который является экспериментальным[4].

Многие математические теоремы являются условными утверждениями. В этом случае доказательство выводит заключение из условий, называемых гипотезами или предпосылками. В свете интерпретации доказательства как оправдания истины, заключение часто рассматривается как необходимое следствие гипотез, а именно, что заключение верно в случае, если гипотезы верны, без каких-либо дополнительных предположений. Тем не менее, условия могут интерпретироваться по-разному в некоторых дедуктивных системах, в зависимости от значений, присвоенных правилам вывода и символа условия.

Хотя теоремы могут быть написаны в полностью символической форме, например, с помощью исчисления высказываний, они часто выражаются на естественном языке (английском, русском, французском и др.). То же верно и для доказательств, которые часто выражаются в виде логически организованной и четко сформулированной цепи неформальных аргументов, предназначенных для того, чтобы убедить читателей в истинности формулировки теоремы, из каковой цепи в принципе можно построить формальное символическое доказательство. Такие аргументы, как правило, легче проверить, чем чисто символические, и, на самом деле, многие математики отдают предпочтение доказательству, которое не только демонстрирует справедливость теоремы, но и каким-то образом объясняет, почему она, очевидно, верна. В некоторых случаях одной картины достаточно для доказательства теоремы.

Поскольку теоремы лежат в основе математики, они также играют центральную роль в её эстетике. Теоремы часто описываются как «тривиальные», «сложные», «глубокие» или даже «красивые». Эти субъективные суждения варьируются не только от человека к человеку, но и со временем: например, когда доказательство упрощено или лучше понято, теорема, которая когда-то была трудной, может стать тривиальной. С другой стороны, глубокая теорема может быть сформулирована просто, но её доказательство может включать в себя удивительные и тонкие связи между различными областями математики. Особенно известным примером такой теоремы является Великая теорема Ферма.


Теорема Пифагора имеет не менее 370 известных доказательств[1]
Планарная карта раскрашена пятью цветами так, что никакие две соседние области не окрашены в один цвет. Эту же карту можно окрасить с использованием только четырёх цветов. Согласно теореме о четырёх цветах, такие раскраски возможны для любой плоской карты, но каждое известное доказательство включает в себя вычислительную часть, слишком объёмную, чтобы быть выполненной без использования компьютера.
Гипотеза Коллатца : один из способов проиллюстрировать её сложность — расширить итерацию от натуральных чисел до комплексных чисел. Результатом является фрактал, который (в соответствии с универсальностью) напоминает множество Мандельброта .