Уравнение Кельвина


Уравнение Кельвина, также известное как уравнение капиллярной конденсации Томсона[1] — уравнение в термодинамике, характеризующее изменение давления p насыщенного пара жидкости или растворимости c твёрдых тел. Выведено Уильямом Томсоном, лордом Кельвином, в 1871 году, но в современном виде было представлено только в 1885 году Германом фон Гельмгольцем.

Уравнение Кельвина исходит из условия равенства химических потенциалов в смежных фазах, находящихся в состоянии термодинамического равновесия[2]. В 1871 году лорд Кельвин вывел следующую формулу зависимости давления насыщенного пара (или растворимости твёрдых тел) от кривизны поверхности раздела двух сосуществующих фаз:

Данная форма уравнения Кельвина была представлена только в 1885 году Германом фон Гельмгольцем, преобразовавшим уравнение Кельвина в новую форму на базе уравнения Оствальда — Фройндлиха[en][3]. Оно имеет вид:

Изменение давления пара жидкости или растворимости твёрдых тел вызывается искривлением поверхности раздела смежных фаз (поверхности соприкосновения твердого тела с жидкостью или жидкости с паром). К примеру, над сферическими каплями жидкости давление насыщенного пара выше, чем его же давление над плоской поверхностью при той же температуре Отсюда растворимость твёрдого вещества с выпуклой поверхностью выше, чем растворимость с плоской поверхностью. Изменение давления в уравнении Кельвина применимо также к изменениям в уравнении давления Лапласа[en]*.

Понижение или повышение давление пара и растворимости зависит от знака кривизны поверхности рассматриваемого вещества в уравнении Кельвина — выпуклой при (повышение), вогнутой при (понижение). При этом давление пара в пузырьке или над поверхностью вогнутого мениска в капилляре будет пониженным. Поскольку значения и различны для частиц разных размеров или для участков поверхностей с впадинами и выступами, уравнение определяет направление переноса вещества (от больших значений и к меньшим) в процессе перехода системы к состоянию термодинамического равновесия. Отсюда крупные капли или частицы растут за счёт испарения или растворения более мелких, неровные сглаживаются за счёт растворения выступов или заполнения впадин. Отличия давления и растворимости заметны только при достаточно малой величине

Формула применяется для характеристики состояния малых объектов — частиц коллоидных систем, зародышей новой фазы, дисперсных и пористых систем — а также при изучении капиллярных явлений и исследовании роста кристаллов.