Уравнение Эйлера — Лагранжа


Уравне́ния Э́йлера — Лагра́нжа (в физике также уравнения Лагранжа — Эйлера, или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации и совместно с принципом стационарности действия используются для вычисления траекторий в механике. В теоретической физике вообще это (классические) уравнения движения в контексте получения их из написанного явно выражения для действия (лагранжиана).

Использование уравнений Эйлера — Лагранжа для нахождения экстремума функционала в некотором смысле аналогично использованию теоремы дифференциального исчисления, утверждающей, что лишь в точке, где первая производная функции обращается в ноль, гладкая функция может иметь экстремум (в случае векторного аргумента приравнивается нулю градиент функции, то есть производная по векторному аргументу). Точнее говоря, это прямое обобщение соответствующей формулы на случай функционалов — функций бесконечномерного аргумента.

на пространстве гладких функций , где через обозначена первая производная по .

Предположим, что подынтегральная функция , дважды непрерывно дифференцируема. Функция называется функцией Лагранжа, или лагранжианом.

Если функционал достигает экстремума на некоторой функции , то для неё должно выполняться обыкновенное дифференциальное уравнение

Рассмотрим стандартный пример: найти кратчайший путь между двумя точками плоскости. Ответом, очевидно, является отрезок, соединяющий эти точки. Попробуем получить его с помощью уравнения Эйлера — Лагранжа в предположении, что кратчайший путь существует и является гладкой кривой.