Ядерное оружие


Я́дерное ору́жие — оружие массового поражения, действие которого основано на поражающих факторах ядерного или термоядерного взрыва.

Атомное оружие основано на разрушительной энергии, получаемой от ядерных реакций деления (оружие деления) или сочетания реакций деления и синтеза (термоядерное оружие). Оба типа бомб выделяют большое количество энергии из относительно небольшого количества вещества: одно ядерное устройство размером с обычную бомбу может разрушить целый город под действием мощной ударной волны, светового излучения и проникающей радиации.

В военных действиях ядерное оружие было использовано всего дважды: при бомбардировке японских городов Хиросима и Нагасаки Вооружёнными силами США в 1945 году во время Второй мировой войны. Согласно подсчётам некоторых учёных[1][2], ядерная война с эквивалентом в 100 ядерных взрывов размера бомбардировки Хиросимы может привести к десяткам миллионов жертв из-за долгосрочных изменений климата планеты (ядерная зима), не учитывая прямых жертв взрывов.

Действие ядерного оружия основано на использовании энергии взрыва ядерного взрывного устройства, высвобождающейся в результате неуправляемой лавинообразно протекающей цепной реакции деления тяжёлых ядер и/или реакции термоядерного синтеза.

Существует ряд веществ, способных привести к цепной реакции деления. В ядерном оружии используются уран-235 или плутоний-239. Уран в природе встречается в виде смеси трёх изотопов: 238U (99,2745 % природного урана), 235U (0,72 %) и 234U (0,0055 %). Цепную ядерную реакцию поддерживает только изотоп 235U. Для обеспечения максимальной энергоемкости уранового взрывного устройства (урановой ядерной бомбы) содержание 235U в нём должно быть не менее 80 %. Поэтому при производстве оружейного урана для повышения доли 235U выполняют обогащение урана. Обычно в ядерном оружии используют 235U с обогащением выше 90 %, либо 239Pu с обогащением 94 %. Также были созданы экспериментальные ядерные заряды на базе 233U, но 233U не нашел применения в ядерном оружии, несмотря на меньшую критическую массу урана-233 по сравнению с ураном-235, из-за примеси 232U, продукты распада которого создают жёсткое проникающее излучение для персонала, обслуживающего такое ядерное оружие.

Альтернативой процессу обогащения урана служит создание плутониевых ядерных взрывных устройств на основе изотопа плутоний-239 в качестве основного ядерного взрывчатого вещества. Плутоний не встречается в природе, и этот элемент получают искусственно, облучая нейтронами 238U. Технологически такое облучение осуществляют в ядерных реакторах. После облучения уран с полученным плутонием отправляют на радиохимический завод, где химическим способом извлекают наработанный плутоний. Регулируя параметры облучения в реакторе, добиваются преимущественной наработки нужного изотопа плутония.


Ядерный гриб от атомной бомбы мощностью 23 кт. на испытаниях (Невада, 1953 год).
Последствия ядерного взрыва: Сумитэру Танигути
Боеприпас пушечной схемы. 1 — пороховой заряд, 2 — орудийный ствол, 3 — урановый снаряд, 4 — урановая мишень
Возможность преждевременного развития цепной реакции до полного соединения блоков.
Устройство боеприпаса L-11 «Little Boy»: 1 — броневая плита, 2 — электрозапалы Марк-15, 3 — казённая часть орудийного ствола с заглушкой, 4 — мешочки с кордитом, 5 — труба усиления ствола, 6 — стальной задник снаряда, 7 — поддон снаряда из карбида вольфрама, 8 — кольца из урана-235, 9 — выравнивающий стержень, 10 — бронированная труба с электропроводкой, 11 — порты барометрических датчиков, 12 — электроразъёмы, 13 — орудийный ствол калибра 6,5 дюймов, 14 — разъёмы предохранителя, 15 — такелажная серьга, 16 — адаптер мишени, 17 — антенны, 18 — рукав из карбида вольфрама, 19 — мишень из урана-235, 20 — полониево-бериллиевые инициаторы, 21 — заглушка из карбида вольфрама, 22 — наковальня, 23 — рукав мишени из стали К-46, 24 — носовая заглушка диаметром 15 дюймов
Принцип действия имплозивной схемы подрыва — по периметру делящегося вещества взрываются заряды конвенционального ВВ, которые создают взрывную волну, «сжимающую» вещество в центре и инициирующую цепную реакцию.
Форма сборки ЯО
Конструкция Теллера — Улама для двухфазного боеприпаса («термоядерная бомба»).
Конструкция термоядерного боеприпаса образца 1950-х годов с цилиндрическим зарядом термоядерного синтеза (в современных конструкциях используются сферические вторичные ступени).
А) первичная ступень деления;
В) вторичная ступень термоядерного синтеза;
1) линзы, фокусирующие ударную волну от взрыва химического ВВ;
2) уран-238 (тампер) покрытый слоем бериллиевого отражателя нейтронов;
3) вакуум вокруг подвешенного плутониевого ядра;
4) тритий внутри полого плутониевого или уранового ядра;
5) полость, заполненная полистироловой пеной;
6) урановый (обжимающий) тампер;
7) дейтерид лития-6 (термоядерное топливо);
8) плутониевый стержень зажигания;
9) корпус для отражения рентгеновского излучения.
Крупные запасы и глобальный радиус действия (тёмно-синий), менее крупные запасы и глобальный радиус действия (синий), небольшие запасы и региональный радиус действия (голубой).
Испытание термоядерной бомбы на атолле Бикини, 1954 г. Мощность взрыва 11 Мт, из которых 7 Мт выделилось от деления тампера из урана-238