Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Длинные линии HVDC, по которым гидроэлектроэнергия проходит от реки Нельсон в Канаде до этой преобразовательной станции, где она преобразуется в переменный ток для использования в энергосистеме южной Манитобы.

Высокое напряжение, постоянный ток ( HVDC ) передача электрической энергии система (также называется мощностью супершоссе или электрическими магистралями ) [1] [2] [3] использует постоянный ток (постоянный ток) для объемной передачи электрической энергии, в отличии с более распространенными системами переменного тока (AC). [4]

В большинстве линий постоянного тока используется напряжение от 100 кВ до 800 кВ. Линия 1100 кВ в Китае была завершена в 2019 году на протяженности 3300 км с мощностью 12 ГВт. [5] [6] Благодаря этому измерению становятся возможными межконтинентальные связи, которые могут помочь справиться с колебаниями ветровой и фотоэлектрической энергии .

HVDC позволяет передавать энергию между несинхронизированными системами передачи переменного тока. Поскольку потоком мощности через линию HVDC можно управлять независимо от фазового угла между источником и нагрузкой, это может стабилизировать сеть от помех из-за быстрых изменений мощности. HVDC также позволяет передавать мощность между сетевыми системами, работающими на разных частотах, например, 50 Гц и 60 Гц. Это улучшает стабильность и экономичность каждой сети, позволяя обмениваться мощностью между несовместимыми сетями.

Современная форма передачи HVDC использует технологию, широко разработанную в 1930-х годах в Швеции ( ASEA ) и в Германии . Первые коммерческие установки включали одну в Советском Союзе в 1951 году между Москвой и Каширой и систему 100 кВ, 20 МВт между Готландом и континентальной Швецией в 1954 году. [7] До китайского проекта 2019 года самая длинная линия постоянного тока высокого напряжения в мире была линия Рио-Мадейра в Бразилии , состоящая из двух биполей ± 600 кВ, 3150 МВт каждая, соединяющая Порту-Велью в штате Рондония сСан-Паулу . Длина линии постоянного тока составляет 2375 км (1476 миль). [8]

  Существующие ссылки
  В разработке
  Предложил
Многие из этих линий HVDC передают энергию из возобновляемых источников, таких как гидро- и ветровая энергия. Имена см. Также в аннотированной версии.

Передача высокого напряжения [ править ]

Высокое напряжение используется для электрической мощности передачи , чтобы уменьшить потери энергии в сопротивлении проводов. Для заданного количества передаваемой мощности удвоение напряжения даст ту же мощность только при половине тока. Поскольку мощность, теряемая в виде тепла в проводах, прямо пропорциональна квадрату тока, удвоение напряжения снижает потери в линии в 4 раза. Хотя потери мощности при передаче также могут быть уменьшены за счет увеличения размера проводника, используются более крупные проводники. тяжелее и дороже.

Высокое напряжение нельзя использовать для освещения или двигателей, поэтому для конечного оборудования необходимо снизить напряжение на уровне передачи. Трансформаторы используются для изменения уровней напряжения в цепях передачи переменного тока (AC). Трансформаторы сделали изменение напряжения практичным, а генераторы переменного тока были более эффективными, чем генераторы постоянного тока. Эти преимущества привели к тому, что на рубеже 20-го века первые низковольтные системы передачи постоянного тока были вытеснены системами переменного тока. [9]

Практическое преобразование мощности между переменным током и постоянным током стало возможным с развитием устройств силовой электроники, таких как ртутно-дуговые клапаны, и, начиная с 1970-х годов, полупроводниковых устройств, таких как тиристоры , интегрированные тиристоры с затворной коммутацией (IGCT), тиристоры с МОП-управлением (MCT). ) и биполярных транзисторов с изолированным затвором (IGBT). [10]

История [ править ]

Электромеханические системы (Thury) [ править ]

Принципиальная схема системы передачи Thury HVDC
HVDC в 1971 году: этот ртутно-дуговый клапан на 150 кВ преобразовывал напряжение переменного тока гидроэнергетики для передачи в отдаленные города от гидрогенераторов Манитобы .
Пилоны Балтийского кабеля HVDC в Швеции

Первая передача электроэнергии на большие расстояния была продемонстрирована с использованием постоянного тока в 1882 году на электростанции Мисбах-Мюнхен , но было передано только 1,5 кВт. [11] Ранний метод передачи HVDC был разработан швейцарским инженером Рене Тюри [12], и его метод был применен на практике в 1889 году в Италии компанией Acquedotto De Ferrari-Galliera . В этой системе использовались последовательно соединенные мотор-генераторные установки для увеличения напряжения. Каждый комплект был изолирован от электрического заземления и приводился в действие изолированными валами от первичного двигателя.. Линия передачи работала в режиме «постоянного тока», с напряжением до 5000 вольт на каждой машине, причем некоторые машины имели двойные коммутаторы для снижения напряжения на каждом коммутаторе. Эта система передавала 630 кВт при 14 кВ постоянного тока на расстояние 120 км. [13] [14] Система Мутье-Лион передавала 8 600 кВт гидроэлектроэнергии на расстояние 200 км, включая 10 км подземного кабеля. Эта система использовала восемь последовательно соединенных генераторов с двойными коммутаторами для общего напряжения 150 кВ между положительным и отрицательным полюсами и работала с 1906 по 1936 год. К 1913 году в эксплуатации находилось пятнадцать систем Thury [15]. Другие системы Thury, работающие при напряжении до 100 кВ постоянного тока, работали до 1930-х годов, но вращающееся оборудование требовало значительного обслуживания и имело большие потери энергии. Различные другие электромеханические устройства были испытаны в первой половине 20 века без особого коммерческого успеха. [16]

Один из способов преобразования постоянного тока из высокого напряжения передачи в более низкое напряжение использования заключался в зарядке последовательно соединенных батарей с последующим параллельным подключением батарей для обслуживания распределительных нагрузок. [17] Хотя на рубеже 20-го века были опробованы как минимум две коммерческие установки, этот метод в целом не был полезен из-за ограниченной емкости батарей, трудностей переключения между последовательным и параллельным подключением и присущей батарее энергоэффективности цикл заряда / разряда. (Современная аккумуляторная электростанция включает трансформаторы и инверторы для преобразования энергии от переменного тока к постоянному току при соответствующих напряжениях.)

Ртутные дуговые клапаны [ править ]

Впервые предложенный в 1914 году [18] ртутно-дуговые клапаны с сетевым управлением стали доступны для передачи электроэнергии в период с 1920 по 1940 годы. Начиная с 1932 года, General Electric испытывала ртутные клапаны и линию электропередачи постоянного тока 12 кВ, которая также служила для преобразовать генерацию 40 Гц для обслуживания нагрузок 60 Гц в Механиквилле, Нью-Йорк . В 1941 году для Берлина была спроектирована подземная кабельная линия мощностью 60 МВт, ± 200 кВ, 115 км с использованием ртутных дуговых клапанов ( проект Эльбы ), но из-за краха правительства Германии в 1945 году проект так и не был завершен. [19]Номинальное обоснование проекта состояло в том, что во время войны проложенный кабель будет менее заметным в качестве цели для бомбардировки. Оборудование было перевезено в Советский Союз и введено в эксплуатацию как система высоковольтного постоянного тока Москва – Кашира. [20] Система Москва – Кашира и соединение в 1954 году группой Уно Ламма в ASEA между континентальной частью Швеции и островом Готланд ознаменовали начало современной эры передачи HVDC. [11]

Для ртутных дуговых клапанов требуется внешняя цепь, чтобы обнулить ток и, таким образом, выключить клапан. В приложениях HVDC сама система переменного тока обеспечивает средства коммутации тока на другой клапан в преобразователе. Следовательно, преобразователи, построенные с использованием ртутных дуговых клапанов, известны как преобразователи с линейной коммутацией (LCC). Для LCC требуются вращающиеся синхронные машины в системах переменного тока, к которым они подключены, что делает невозможным передачу энергии на пассивную нагрузку.

Ртутные дуговые клапаны были обычным явлением в системах, разработанных до 1972 года, последняя ртутная дуговая система HVDC (система Nelson River Bipole 1 в Манитобе , Канада) вводилась в эксплуатацию поэтапно в период с 1972 по 1977 год. [21] С тех пор вся ртуть дуговые системы были либо отключены, либо преобразованы для использования твердотельных устройств. Последней системой HVDC, в которой использовались ртутные дуговые клапаны, была линия HVDC между островами между Северным и Южным островами Новой Зеландии, которая использовала их на одном из двух полюсов. 1 августа 2012 года ртутные дуговые клапаны были выведены из эксплуатации перед вводом в эксплуатацию сменных тиристорных преобразователей.

Тиристорные клапаны [ править ]

С 1977 года в новых системах HVDC использовались только твердотельные устройства , в большинстве случаев тиристоры . Как и ртутные дуговые клапаны, тиристоры требуют подключения к внешней цепи переменного тока в приложениях HVDC, чтобы включать и выключать их. HVDC с использованием тиристоров также известен как преобразователь с линейной коммутацией (LCC) HVDC.

Разработка тиристорных вентилей для HVDC началась в конце 1960-х годов. Первой полной схемой HVDC, основанной на тиристоре, была схема Eel River в Канаде, которая была построена General Electric и введена в эксплуатацию в 1972 году.

15 марта 1979 г. было подано питание на линию постоянного тока на базе тиристоров мощностью 1920 МВт между Кабора-Басса и Йоханнесбург (1410 км). Конверсионное оборудование было построено в 1974 году компанией Allgemeine Elektricitäts-Gesellschaft AG (AEG) , а партнерами по проекту были Brown, Boveri & Cie (BBC) и Siemens . Перебои в обслуживании на несколько лет стали результатом гражданской войны в Мозамбике . [22] Напряжение передачи ± 533 кВ было самым высоким в мире в то время. [11]

Конденсаторно-коммутируемые преобразователи (CCC) [ править ]

Преобразователи с линейной коммутацией имеют некоторые ограничения при использовании в системах HVDC. Это происходит из-за того, что в цепи переменного тока требуется отключение тока тиристора, а также из-за необходимости короткого периода «обратного» напряжения для выполнения выключения (времени выключения). Попыткой устранить эти ограничения является преобразователь с конденсаторной коммутацией ( CCC ), который использовался в небольшом количестве систем HVDC. CCC отличается от обычной системы HVDC тем, что в ней последовательно вставлены конденсаторы в соединения линии переменного тока на первичной или вторичной стороне трансформатора преобразователя. Последовательные конденсаторы частично компенсируют коммутирующую индуктивность преобразователя и помогают снизить токи повреждения. Это также позволяет уменьшитьУгол затухания , используемый с преобразователем / инвертором, что снижает потребность в поддержке реактивной мощности .

Однако CCC остался лишь нишевым приложением из-за появления преобразователей источника напряжения (VSC), которые полностью исключают необходимость во времени гашения (выключения).

Преобразователи источника напряжения (VSC) [ править ]

Преобразователи источника напряжения, широко используемые в приводах двигателей с 1980-х годов, начали появляться в высоковольтных сетях постоянного тока в 1997 году в рамках экспериментального проекта Hellsjön – Grängesberg в Швеции. К концу 2011 года эта технология заняла значительную долю рынка HVDC.

Разработка более мощных биполярных транзисторов с изолированным затвором (IGBT), тиристоров отключения затвора (GTO) и интегрированных тиристоров с коммутацией затвора (IGCT) сделала меньшие системы HVDC экономичными. Производитель ABB Group называет эту концепцию HVDC Light , в то время как Siemens называет аналогичную концепцию HVDC PLUS ( универсальная система Power Link ), а Alstom называет свой продукт, основанный на этой технологии, HVDC MaxSine.. Они распространили использование HVDC до блоков величиной в несколько десятков мегаватт и воздушных линий длиной всего несколько десятков километров. Существует несколько различных вариантов технологии VSC: в большинстве установок, построенных до 2012 года, используется широтно-импульсная модуляция в цепи, которая фактически является приводом двигателя сверхвысокого напряжения. Текущие установки, включая HVDC PLUS и HVDC MaxSine, основаны на вариантах преобразователя, называемого модульным многоуровневым преобразователем (MMC).

Преимущество многоуровневых преобразователей состоит в том, что они позволяют уменьшить или полностью исключить оборудование для фильтрации гармоник . Для сравнения: фильтры гармоник переменного тока типичных преобразовательных подстанций с сетевой коммутацией покрывают почти половину площади преобразовательной подстанции.

Со временем системы преобразователей напряжения, вероятно, заменят все установленные простые системы на основе тиристоров, в том числе самые мощные системы передачи постоянного тока. [10]

Сравнение с AC [ править ]

Преимущества [ править ]

Схема передачи постоянного тока «точка-точка» на большие расстояния обычно имеет более низкие общие инвестиционные затраты и меньшие потери, чем эквивалентная схема передачи переменного тока. Оборудование для преобразования HVDC на оконечных станциях является дорогостоящим, но общие затраты на линии передачи постоянного тока на большие расстояния ниже, чем для линии переменного тока на том же расстоянии. Для HVDC требуется меньше проводов на единицу расстояния, чем для линии переменного тока, поскольку нет необходимости поддерживать три фазы и отсутствует скин-эффект .

В зависимости от уровня напряжения и деталей конструкции, потери при передаче постоянного тока оцениваются как менее 3% на 1000 км, что на 30-40% меньше, чем в линиях переменного тока при тех же уровнях напряжения. [23] [ неудачная проверка ] [ необходим лучший источник ] Это связано с тем, что постоянный ток передает только активную мощность и, таким образом, вызывает меньшие потери, чем переменный ток, который передает как активную, так и реактивную мощность .

Передача HVDC также может быть выбрана для других технических преимуществ. HVDC может передавать мощность между отдельными сетями переменного тока. Поток мощности HVDC между отдельными системами переменного тока можно автоматически контролировать для поддержки любой сети в переходных условиях, но без риска того, что серьезный обвал энергосистемы в одной сети приведет к краху второй. HVDC улучшает управляемость системы, поскольку по крайней мере одна линия HVDC встроена в сеть переменного тока - в дерегулируемой среде функция управляемости особенно полезна там, где необходим контроль торговли энергией.

Комбинированные экономические и технические преимущества передачи HVDC могут сделать ее подходящим выбором для подключения источников электроэнергии, расположенных далеко от основных потребителей.

Конкретные приложения, в которых технология передачи HVDC дает преимущества, включают:

  • Схемы передачи по подводному кабелю (например, 580-километровый кабель NorNed между Норвегией и Нидерландами , [24] итальянский кабель SAPEI длиной 420 км между Сардинией и материком [25], 290-километровый Basslink между материковой частью Австралии и Тасманией , [26] и 250-километровый Балтийский кабель между Швецией и Германией [27] ).
  • Групповая передача электроэнергии между конечными точками на большие расстояния без промежуточных «ответвлений», обычно для подключения удаленной генерирующей установки к основной сети, например , системы передачи постоянного тока Нельсон-Ривер в Канаде .
  • Увеличение пропускной способности существующей электросети в ситуациях, когда дополнительные провода сложно или дорого устанавливать.
  • Передача энергии и стабилизация между несинхронизированными сетями переменного тока, крайним примером которой является возможность передачи энергии между странами, которые используют переменный ток на разных частотах. Поскольку такая передача может происходить в любом направлении, она увеличивает стабильность обеих сетей, позволяя им использовать друг друга в аварийных ситуациях и сбоях.
  • Стабилизация электросети, в которой преобладает переменный ток, без увеличения уровня неисправностей ( предполагаемый ток короткого замыкания ).
  • Интеграция возобновляемых ресурсов, таких как ветер, в главную передающую сеть. Воздушные линии HVDC для проектов интеграции берегового ветра и кабели HVDC для морских проектов были предложены в Северной Америке и Европе как по техническим, так и по экономическим причинам. Сети постоянного тока с несколькими преобразователями источников напряжения (VSC) являются одним из технических решений для объединения морской ветровой энергии и передачи ее в центры нагрузки, расположенные далеко от берега. [28]

Кабельные системы [ править ]

Длинные подводные или подземные высоковольтные кабели имеют более высокую электрическую емкость по сравнению с воздушными линиями электропередачи, поскольку токоведущие жилы внутри кабеля окружены относительно тонким слоем изоляции ( диэлектрика ) и металлической оболочкой. Геометрия - это длинный коаксиальный конденсатор . Общая емкость увеличивается с увеличением длины кабеля. Эта емкость находится в параллельной цепис грузом. Если для передачи по кабелю используется переменный ток, в кабеле должен протекать дополнительный ток для зарядки емкости этого кабеля. Этот дополнительный ток вызывает дополнительные потери энергии из-за рассеивания тепла в проводниках кабеля, повышая его температуру. Дополнительные потери энергии также возникают из-за диэлектрических потерь в изоляции кабеля.

Однако, если используется постоянный ток, емкость кабеля заряжается только при первом включении кабеля или при изменении уровня напряжения; дополнительный ток не требуется. Для достаточно длинного кабеля переменного тока вся токонесущая способность проводника потребуется только для подачи зарядного тока. Эта проблема емкости кабеля ограничивает длину и пропускную способность силовых кабелей переменного тока. [29] Кабели с питанием от постоянного тока ограничиваются только повышением температуры и законом Ома . Хотя через диэлектрический изолятор протекает некоторый ток утечки , он невелик по сравнению с номинальным током кабеля.

Системы воздушных линий [ править ]

Емкостный эффект длинных подземных или подводных кабелей в системах передачи переменного тока также применяется к воздушным линиям переменного тока, хотя и в гораздо меньшей степени. Тем не менее, для длинной воздушной линии электропередачи переменного тока ток, протекающий только для зарядки емкости линии, может быть значительным, и это снижает способность линии передавать полезный ток к нагрузке на удаленном конце. Еще одним фактором, снижающим полезную токопроводящую способность линий переменного тока, является скин-эффект., что вызывает неравномерное распределение тока по площади поперечного сечения проводника. Провода линии электропередачи, работающие с постоянным током, не страдают ни одним ограничением. Следовательно, при тех же потерях в проводнике (или тепловом эффекте) данный проводник может передавать больше мощности нагрузке при работе с HVDC, чем с переменным током.

Наконец, в зависимости от условий окружающей среды и характеристик изоляции воздушной линии, работающей с высоковольтным постоянным током, данная линия электропередачи может работать с постоянным высоковольтным постоянным напряжением, которое приблизительно равно пиковому напряжению переменного тока, на которое она рассчитана, и утеплен. Мощность, подаваемая в систему переменного тока, определяется среднеквадратичным значением (RMS) переменного напряжения, но RMS составляет всего около 71% от пикового напряжения. Следовательно, если линия HVDC может непрерывно работать с напряжением HVDC, которое совпадает с пиковым напряжением эквивалентной линии переменного тока, то для заданного тока (где ток HVDC совпадает со среднеквадратичным током в линии переменного тока) способность передачи мощности при работе с HVDC примерно на 40% выше, чем способность при работе от переменного тока.

Асинхронные соединения [ править ]

Поскольку HVDC обеспечивает передачу энергии между несинхронизированными системами распределения переменного тока, это может помочь повысить стабильность системы, предотвращая распространение каскадных отказов от одной части более широкой сети передачи электроэнергии к другой. Изменения нагрузки, которые могут привести к рассинхронизации и разделению частей сети переменного тока, не повлияют аналогичным образом на звено постоянного тока, а поток мощности через звено постоянного тока будет иметь тенденцию к стабилизации сети переменного тока. Величину и направление потока мощности через звено постоянного тока можно напрямую контролировать и изменять по мере необходимости для поддержки сетей переменного тока на любом конце звена постоянного тока. Это заставило многих операторов энергосистем задуматься о более широком использовании технологии HVDC только ради ее стабильности.

Недостатки [ править ]

Недостатки HVDC заключаются в преобразовании, переключении, управлении, доступности и обслуживании.

HVDC менее надежен и имеет меньшую доступность, чем системы переменного тока (AC), в основном из-за дополнительного оборудования для преобразования. Однополюсные системы имеют коэффициент готовности около 98,5%, при этом около трети простоев являются незапланированными из-за неисправностей. Отказоустойчивые бипольные системы обеспечивают высокую доступность для 50% пропускной способности канала, но доступность полной пропускной способности составляет от 97% до 98%. [30]

Необходимые преобразовательные подстанции дороги и имеют ограниченную перегрузочную способность. На меньших расстояниях передачи потери в преобразовательных подстанциях могут быть больше, чем в линии передачи переменного тока на том же расстоянии. [31] Стоимость преобразователей не может быть компенсирована снижением стоимости строительства линии и меньшими потерями в линии.

Работа по схеме HVDC требует хранения большого количества запасных частей, часто исключительно для одной системы, поскольку системы HVDC менее стандартизированы, чем системы переменного тока, а технологии меняются быстрее.

В отличие от систем переменного тока, реализация многополюсных систем сложна (особенно с преобразователями с линейной коммутацией), как и расширение существующих схем до многополюсных систем. Для управления потоком мощности в многотерминальной системе постоянного тока требуется хорошая связь между всеми терминалами; поток мощности должен активно регулироваться системой управления преобразователем вместо того, чтобы полагаться на свойства собственного импеданса и фазового угла линии передачи переменного тока. [32] Многопозиционные системы редки. По состоянию на 2012 год только два находятся в эксплуатации: линия электропередачи Hydro Québec - Новая Англия между Radisson, Sandy Pond и Nicolet [33] и линия Сардиния - материковая Италия, которая была изменена в 1989 году, чтобы также обеспечивать электроэнергией остров Корсика.. [34]

Высоковольтный выключатель постоянного тока [ править ]

Автоматические выключатели HVDC сложно построить из-за дуги : при переменном токе напряжение инвертируется, и при этом пересекает нулевое напряжение десятки раз в секунду. Дуга переменного тока будет «самозатухать» в одной из этих точек пересечения нуля, потому что не может быть дуги, где нет разности потенциалов. Постоянный ток никогда не пересекает нулевое напряжение и никогда не гаснет сам по себе, поэтому расстояние и продолжительность дуги для постоянного тока намного больше, чем для переменного напряжения того же напряжения. Это означает, что в автоматический выключатель должен быть включен какой-то механизм, чтобы сбросить ток до нуля и погасить дугу, в противном случае искрение и износ контактов будут слишком большими, чтобы обеспечить надежное переключение.

В ноябре 2012 года ABB объявила о разработке первого в мире сверхбыстрого выключателя постоянного тока высокого напряжения. [35] [36] Механические автоматические выключатели слишком медленные для использования в сетях HVDC, хотя они уже много лет используются в других приложениях. И наоборот, полупроводниковые прерыватели достаточно быстры, но обладают высоким сопротивлением при проведении, расходе энергии и выделении тепла при нормальной работе. Выключатель АББ сочетает в себе полупроводниковые и механические выключатели для создания «гибридного выключателя» с малым временем отключения и низким сопротивлением при нормальной работе.

Гибридный выключатель основан на обычном полупроводниковом выключателе («главный выключатель») с характерным малым временем отключения, полным допуском по напряжению и току, а также характеристическим сопротивлением при проводимости. Этот главный выключатель размещается параллельно «коммутатору нагрузки»: небольшому полупроводниковому выключателю («переключатель коммутации нагрузки»), включенному последовательно с быстрым механическим переключателем («сверхбыстрым разъединителем»). Хотя ни один элемент коммутатора нагрузки не может отключить полное напряжение в линии, коммутатор нагрузки может безопасно пропускать нормальный рабочий ток с меньшими резистивными потерями, чем главный выключатель. Наконец, есть медленный механический переключатель для полного отключения линии. Его нельзя открыть, когда линия находится под напряжением,но полностью отключит линию без утечки тока и выделения тепла. При нормальной работе все переключатели замкнуты (включены), и большая часть тока проходит через коммутатор нагрузки с низким сопротивлением, а не через главный выключатель с более высоким сопротивлением.

Когда требуется отключение, первым шагом является отключение коммутатора нагрузки: размыкается низковольтный полупроводниковый выключатель, который направляет почти весь ток через главный выключатель. Главный выключатель по-прежнему работает, поэтому коммутатор нагрузки не видит все напряжение в линии, а только падение напряжения, вызванное тем, что главный высоковольтный выключатель не является идеальным проводником. Поскольку переключатель коммутации нагрузки разомкнут, сверхбыстрый разъединитель не подвергается воздействию высокого тока и может размыкаться без повреждения дуги. При размыкании механического переключателя коммутатор нагрузки теперь полностью отключен: в полупроводниковом переключателе не выделяется тепло, и даже полное линейное напряжение не может проходить через него. Теперь весь ток проходит через главный выключатель.

Теперь главный выключатель размыкается, прерывая ток. Это снижает ток почти до нуля, но увеличивает напряжение на главном выключателе и коммутаторе нагрузки почти до полного линейного напряжения. Если бы переключатель коммутации нагрузки не был ранее механически отключен, это напряжение могло бы его повредить. Поскольку главный выключатель является полупроводниковым выключателем, он отключает почти весь ток, но не весь его, поэтому для окончательной изоляции медленный механический выключатель отключает линию. Поскольку почти весь ток блокируется главным выключателем, его можно отключить без повреждений. [36]

Затраты [ править ]

Обычно поставщики систем HVDC, такие как Alstom , Siemens и ABB , не указывают подробные сведения о стоимости конкретных проектов. Это может рассматриваться как коммерческий вопрос между поставщиком и клиентом.

Затраты сильно различаются в зависимости от специфики проекта (таких как номинальная мощность, длина цепи, воздушные и кабельные маршруты, затраты на землю и улучшения сети переменного тока, необходимые на любом из терминалов). Подробное сравнение затрат на передачу постоянного и переменного тока может потребоваться в ситуациях, когда нет явных технических преимуществ для постоянного тока, и выбор определяется только экономическими соображениями.

Однако некоторые практикующие предоставили некоторую информацию:

Для линии 8 ГВт 40 км, проложенной под Ла-Маншем , ниже приведены приблизительные затраты на основное оборудование для биполярной традиционной линии HVDC мощностью 500 кВ мощностью 2000 МВт (исключая путевые расходы, береговые работы по укреплению, согласование, проектирование, страхование и т. Д. )

  • Преобразовательные станции ~ 110 миллионов фунтов стерлингов (~ 120 миллионов евро или 173,7 миллиона долларов)
  • Подводный кабель + установка ~ 1 млн фунтов стерлингов / км (~ 1,2 млн евро или ~ 1,6 млн долларов США / км)

Таким образом, для мощности 8 ГВт между Великобританией и Францией в четырех звеньях мало что осталось от 750 миллионов фунтов стерлингов для установленных работ. Добавьте еще 200–300 миллионов фунтов стерлингов для других работ в зависимости от требуемых дополнительных береговых работ. [37]

Объявленная в апреле 2010 года линия на 2 000 МВт, 64 км между Испанией и Францией оценивается в 700 миллионов евро. Сюда входит стоимость туннеля через Пиренеи. [38]

Процесс преобразования [ править ]

Конвертер [ править ]

В основе преобразовательной подстанции HVDC оборудование, которое выполняет преобразование между переменным током и постоянным током, называется преобразователем . Почти все преобразователи HVDC изначально способны преобразовывать переменный ток в постоянный ( выпрямление ) и из постоянного в переменный ( инверсия ), хотя во многих системах HVDC система в целом оптимизирована для потока мощности только в одном направлении. Независимо от того, как спроектирован сам преобразователь, станция, которая работает (в данный момент) с потоком энергии от переменного тока к постоянному, называется выпрямителем, а станция, которая работает с потоком мощности от постоянного тока к переменному току, называется инвертор .

Ранние системы HVDC использовали электромеханическое преобразование (система Thury), но все системы HVDC, построенные с 1940-х годов, использовали электронные (статические) преобразователи. Электронные преобразователи для HVDC делятся на две основные категории:

  • Преобразователи с линейной коммутацией (LCC)
  • Преобразователи с источником напряжения или преобразователи с источником тока.

Преобразователи с линейной коммутацией [ править ]

Большинство систем HVDC, работающих сегодня, основаны на преобразователях с линейной коммутацией.

В базовой конфигурации LCC используется трехфазный мостовой выпрямитель или шестиимпульсный мост , содержащий шесть электронных переключателей, каждый из которых соединяет одну из трех фаз с одной из двух шин постоянного тока. Полный коммутирующий элемент обычно называют клапаном , независимо от его конструкции. Однако при изменении фазы только через каждые 60 ° при использовании такой схемы на клеммах постоянного и переменного тока возникают значительные гармонические искажения .

Мостовой выпрямитель с двенадцатью импульсами

Усовершенствованная конструкция использует 12 вентилей в двенадцатиимпульсном мосте . Перед преобразованием переменный ток разделяется на два отдельных трехфазных источника питания. Затем один из комплектов источников питания конфигурируется так, чтобы иметь вторичную обмотку звезды (звезда), а другой - вторичную обмотку треугольником, устанавливая разность фаз 30 ° между двумя наборами из трех фаз. С двенадцатью клапанами, соединяющими каждый из двух наборов из трех фаз с двумя шинами постоянного тока, фаза изменяется каждые 30 °, и гармоники значительно уменьшаются. По этой причине система с двенадцатью импульсами стала стандартной для большинства систем HVDC с линейной коммутацией, построенных с 1970-х годов.

В преобразователях с линейной коммутацией преобразователь имеет только одну степень свободы - угол зажигания , который представляет собой временную задержку между положительным напряжением на клапане (в этот момент клапан начал бы проводить ток, если бы он был сделан из диодов) и включаются тиристоры. Выходное напряжение постоянного тока преобразователя постепенно становится менее положительным по мере увеличения угла зажигания: углы зажигания до 90 ° соответствуют выпрямлению и приводят к положительным напряжениям постоянного тока, а углы зажигания более 90 ° соответствуют инверсии и приводят к отрицательным напряжениям постоянного тока. . Практический верхний предел для угла открытия составляет около 150–160 °, потому что выше этого клапана будет недостаточно времени открытия .

В ранних системах LCC использовались ртутно-дуговые клапаны , которые были прочными, но требовали значительного обслуживания. Из-за этого многие ртутно-дуговые системы HVDC были построены с байпасным распределительным устройством через каждый шестиимпульсный мост, так что схема HVDC могла работать в шестиимпульсном режиме в течение коротких периодов технического обслуживания. Последняя ртутная дуговая система была остановлена ​​в 2012 году.

Тиристорный клапан был впервые использован в системах HVDC в 1972 г. тиристорный представляет собой твердотельное полупроводниковое устройство , похожее на диод , но с дополнительным терминалом управления , который используется , чтобы включить устройство в определенный момент времени в течение цикла переменного тока. Поскольку напряжения в системах HVDC, в некоторых случаях до 800 кВ, намного превышают напряжения пробоя используемых тиристоров, тиристорные клапаны HVDC построены с использованием большого количества последовательно соединенных тиристоров. Дополнительные пассивные компоненты, такие как конденсаторы и резисторыдолжны быть подключены параллельно с каждым тиристором, чтобы гарантировать, что напряжение на клапане равномерно распределяется между тиристорами. Тиристор плюс его схемы градуировки и другое вспомогательное оборудование называется тиристорным уровнем .

Блоки тиристорных клапанов для Полюса 2 между островами HVDC между Северным и Южным островами Новой Зеландии . Мужчина внизу показывает шкалу размеров клапанов.

Каждый тиристорный клапан обычно содержит десятки или сотни тиристорных уровней, каждый из которых работает при разном (высоком) потенциале относительно земли. Таким образом, командную информацию на включение тиристоров нельзя просто отправить по проводному соединению - ее необходимо изолировать. Метод изоляции может быть магнитным, но обычно оптическим. Используются два оптических метода: косвенный и прямой оптический запуск. В методе непрямого оптического запуска низковольтная управляющая электроника посылает световые импульсы по оптическим волокнам в управляющую электронику на стороне высокого напряжения, которая получает свою мощность от напряжения на каждом тиристоре. Альтернативный метод прямого оптического запуска обходится без большей части электроники верхнего плеча, вместо этого для переключения используются световые импульсы от управляющей электроники.световые тиристоры (LTT), хотя для защиты клапана все же может потребоваться небольшой блок контрольной электроники.

В преобразователе с линейной коммутацией постоянный ток (обычно) не может менять направление; он протекает через большую индуктивность и может считаться почти постоянным. Со стороны переменного тока преобразователь ведет себя примерно как источник тока, подавая в сеть переменного тока токи сетевой частоты и гармонические токи. По этой причине преобразователь с линейной коммутацией для HVDC также рассматривается как инвертор с источником тока .

Преобразователи напряжения [ править ]

Поскольку тиристоры могут быть включены (не выключены) только управляющим воздействием, система управления имеет только одну степень свободы - когда включать тиристор. В некоторых случаях это важное ограничение.

С некоторыми другими типами полупроводниковых устройств, такими как биполярный транзистор с изолированным затвором (IGBT), можно управлять включением и выключением, что дает вторую степень свободы. В результате их можно использовать для изготовления самокоммутируемых преобразователей . В таких преобразователях полярность постоянного напряжения обычно фиксирована, и постоянное напряжение, сглаженное большой емкостью, можно считать постоянным. По этой причине преобразователь HVDC с использованием IGBT обычно называют преобразователем с источником напряжения.. Дополнительная управляемость дает много преимуществ, в частности, возможность включать и выключать IGBT много раз за цикл для улучшения гармонических характеристик. Поскольку преобразователь является самокоммутируемым, его работа больше не зависит от синхронных машин в системе переменного тока. Таким образом, преобразователь напряжения может подавать питание в сеть переменного тока, состоящую только из пассивных нагрузок, что невозможно с LCC HVDC.

В системах HVDC, основанных на преобразователях с источником напряжения, обычно используется шестиимпульсное соединение, поскольку преобразователь производит гораздо меньше гармонических искажений, чем сопоставимый LCC, а двенадцатипульсное соединение не требуется.

Большинство систем VSC HVDC, построенных до 2012 года, были основаны на двухуровневом преобразователе , который можно рассматривать как шестиимпульсный мост, в котором тиристоры были заменены на IGBT с обратно-параллельными диодами, а сглаживающие реакторы постоянного тока были заменены. сглаживающими конденсаторами постоянного тока. Такие преобразователи получили свое название от двух дискретных уровней напряжения на выходе переменного тока каждой фазы, которые соответствуют электрическим потенциалам положительных и отрицательных клемм постоянного тока. Широтно-импульсная модуляция (ШИМ) обычно используется для улучшения гармонических искажений преобразователя.

Некоторые системы HVDC были построены с трехуровневыми преобразователями , но сегодня большинство новых систем VSC HVDC строятся с той или иной формой многоуровневого преобразователя , чаще всего с модульным многоуровневым преобразователем (MMC), в котором каждый клапан состоит из ряда независимых субмодулей преобразователя. , каждый из которых содержит свой накопительный конденсатор. IGBT в каждом субмодуле либо обходят конденсатор, либо подключают его к цепи, позволяя вентилю синтезировать ступенчатое напряжение с очень низкими уровнями гармонических искажений.

Преобразователи трансформаторов [ править ]

Однофазный трехобмоточный преобразовательный трансформатор. Слева показаны длинные втулки клапанной обмотки, которые выступают через стену клапанного зала . Втулка линейной обмотки выступает вертикально вверх по центру справа.

На стороне переменного тока каждого преобразователя блок трансформаторов, часто три физически разделенных однофазных трансформатора, изолируют станцию ​​от источника переменного тока, чтобы обеспечить местное заземление и гарантировать правильное возможное напряжение постоянного тока. Затем выход этих трансформаторов подключается к преобразователю.

Преобразовательные трансформаторы для схем LCC HVDC являются довольно специализированными из-за высоких уровней гармонических токов, протекающих через них, и из-за того, что изоляция вторичной обмотки испытывает постоянное напряжение постоянного тока, которое влияет на конструкцию изолирующей конструкции (сторона клапана требует более прочной изоляции) внутри резервуара. В системах LCC трансформаторы также должны обеспечивать сдвиг фазы на 30 °, необходимый для подавления гармоник.

Преобразовательные трансформаторы для систем VSC HVDC обычно проще и традиционнее по конструкции, чем трансформаторы для систем LCC HVDC.

Реактивная мощность [ править ]

Главный недостаток систем HVDC, использующих преобразователи с линейной коммутацией, заключается в том, что преобразователи по своей природе потребляют реактивную мощность . Переменный ток, протекающий в преобразователь из системы переменного тока, отстает от переменного напряжения, поэтому независимо от направления потока активной мощности преобразователь всегда поглощает реактивную мощность, действуя так же, как шунтирующий реактор . Потребляемая реактивная мощность составляет не менее 0,5 Мвар / МВт в идеальных условиях и может быть выше, когда преобразователь работает с более высоким, чем обычно, углом зажигания или затухания или пониженным напряжением постоянного тока.

Хотя на преобразовательных подстанциях HVDC, подключенных непосредственно к электростанциям, часть реактивной мощности может обеспечиваться самими генераторами, в большинстве случаев реактивная мощность, потребляемая преобразователем, должна обеспечиваться батареями шунтирующих конденсаторов, подключенных к клеммам переменного тока преобразователя. Шунтирующие конденсаторы обычно подключаются непосредственно к сетевому напряжению, но в некоторых случаях могут быть подключены к более низкому напряжению через третичную обмотку преобразовательного трансформатора.

Поскольку потребляемая реактивная мощность зависит от передаваемой активной мощности, шунтирующие конденсаторы обычно необходимо разделить на несколько переключаемых батарей (обычно по четыре на преобразователь), чтобы предотвратить образование излишка реактивной мощности при низкой передаваемой мощности.

Шунтирующие конденсаторы почти всегда снабжены настраивающими реакторами и, при необходимости, демпфирующими резисторами, так что они могут выполнять двойную роль в качестве фильтров гармоник .

С другой стороны, преобразователи источника напряжения могут либо производить, либо потреблять реактивную мощность по запросу, в результате чего обычно не требуются отдельные шунтирующие конденсаторы (кроме тех, которые требуются исключительно для фильтрации).

Гармоники и фильтрация [ править ]

Все силовые электронные преобразователи генерируют некоторую степень гармонических искажений в системах переменного и постоянного тока, к которым они подключены, и преобразователи HVDC не являются исключением.

В недавно разработанном модульном многоуровневом преобразователе (MMC) уровни гармонических искажений могут быть практически незначительными, но с преобразователями с линейной коммутацией и более простыми типами преобразователей источника напряжения могут возникать значительные гармонические искажения как на стороне переменного, так и на стороне постоянного тока. конвертер. В результате фильтры гармоник почти всегда требуются на выводах переменного тока таких преобразователей, а в схемах передачи HVDC с использованием воздушных линий также могут потребоваться на стороне постоянного тока.

Фильтры для преобразователей с линейной коммутацией [ править ]

Основным строительным блоком преобразователя HVDC с линейной коммутацией является шестиимпульсный мост . Такое устройство создает очень высокие уровни гармонических искажений, действуя как источник тока, вводя гармонические токи порядка 6n ± 1 в систему переменного тока и генерируя гармонические напряжения порядка 6n, накладываемые на напряжение постоянного тока.

Обеспечение фильтров гармоник, способных подавлять такие гармоники, очень дорого, поэтому почти всегда используется вариант, известный как двенадцатиимпульсный мост (состоящий из двух последовательно соединенных шестиимпульсных мостов с фазовым сдвигом между ними 30 °). При двенадцатиимпульсной схеме гармоники все еще возникают, но только порядка 12n ± 1 на стороне переменного тока и 12n на стороне постоянного тока. Задача подавления таких гармоник остается сложной, но выполнимой.

Преобразователи с коммутацией линий для HVDC обычно снабжены комбинациями фильтров гармоник, предназначенных для работы с 11-й и 13-й гармониками на стороне переменного тока и 12-й гармоникой на стороне постоянного тока. Иногда могут быть предусмотрены фильтры верхних частот для работы с 23-м, 25-м, 35-м, 37-м ... на стороне переменного тока и 24-м, 36-м ... на стороне постоянного тока. Иногда фильтры переменного тока могут также нуждаться в демпфировании на нехарактерных гармониках более низкого порядка, таких как 3-я или 5-я гармоники.

Задача проектирования фильтров гармоник переменного тока для преобразовательных станций HVDC является сложной и требует больших вычислительных ресурсов, поскольку помимо обеспечения того, чтобы преобразователь не создавал недопустимого уровня искажения напряжения в системе переменного тока, необходимо обеспечить, чтобы фильтры гармоник не резонировали. с каким-либо компонентом в другом месте системы переменного тока. Для проектирования фильтров переменного тока необходимо детальное знание гармонического импеданса системы переменного тока в широком диапазоне частот. [39]

Фильтры постоянного тока требуются только для систем передачи постоянного тока высокого напряжения, включающих воздушные линии. Искажение напряжения само по себе не является проблемой, поскольку потребители не подключаются напрямую к клеммам постоянного тока системы, поэтому основным критерием проектирования фильтров постоянного тока является обеспечение того, чтобы гармонические токи, протекающие в линиях постоянного тока, не вызывали помех. в близлежащих открытых телефонных линиях . [40] С ростом числа цифровых мобильных телекоммуникационных систем, которые намного менее восприимчивы к помехам, фильтры постоянного тока становятся менее важными для систем HVDC.

Фильтры для преобразователей напряжения [ править ]

Некоторые типы преобразователей напряжения могут давать такие низкие уровни гармонических искажений, что фильтры вообще не требуются. Однако типы преобразователей, такие как двухуровневый преобразователь, используемый с широтно-импульсной модуляцией (ШИМ), по-прежнему требуют некоторой фильтрации, хотя и меньшей, чем в системах преобразователей с линейной коммутацией.

В таких преобразователях спектр гармоник обычно смещается в сторону более высоких частот, чем у преобразователей с линейной коммутацией. Обычно это позволяет уменьшить размер фильтрующего оборудования. Доминирующими частотами гармоник являются боковые полосы частоты ШИМ и кратные ей. В приложениях HVDC частота ШИМ обычно составляет от 1 до 2 кГц.

Конфигурации [ править ]

Монополь [ править ]

Блок-схема монопольной системы с заземлением

В монопольной конфигурации один из выводов выпрямителя подключен к заземлению. Другой вывод, находящийся под высоким напряжением относительно земли, подключен к линии передачи. Заземлен терминал может быть подключен к соответствующему связи на инвертирующих станциях с помощью второго проводника.

Если металлический обратный проводник не установлен, ток течет по земле (или воде) между двумя электродами. Это устройство представляет собой тип однопроводной системы заземления .

Электроды обычно располагаются в нескольких десятках километров от станций и подключаются к станциям посредством электродной линии среднего напряжения . Конструкция самих электродов зависит от того, расположены ли они на суше, на берегу или в море. Для монополярной конфигурации с заземлением поток тока на землю является однонаправленным, что означает, что конструкция одного из электродов ( катода ) может быть относительно простой, хотя конструкция анодного электрода довольно сложна.

Для передачи на большие расстояния возврат на землю может быть значительно дешевле, чем альтернативы с использованием выделенного нейтрального проводника, но это может привести к таким проблемам, как:

  • Электрохимическая коррозия длинных металлических предметов, находящихся под землей, таких как трубопроводы
  • Подводные заземляющие электроды в морской воде могут выделять хлор или иным образом влиять на химический состав воды.
  • Несбалансированный путь тока может привести к появлению чистого магнитного поля, которое может повлиять на магнитные навигационные компасы для судов, проходящих по подводному кабелю.

Эти эффекты можно устранить, установив металлический обратный проводник между двумя концами монополярной линии передачи. Поскольку один вывод преобразователей подключен к земле, обратный провод не нужно изолировать для полного передаваемого напряжения, что делает его менее дорогостоящим, чем провод высокого напряжения. Решение о том, использовать ли металлический возвратный проводник, основывается на экономических, технических и экологических факторах. [41]

Современные монополярные системы для чистых воздушных линий обычно обеспечивают мощность 1,5 ГВт. [42] При использовании подземных или подводных кабелей типичное значение составляет 600 МВт.

Большинство монополярных систем предназначены для будущего расширения биполярности. Опоры линий электропередачи могут быть спроектированы для проведения двух проводов, даже если первоначально для монопольной системы передачи используется только один. Второй проводник либо не используется, используется как электродная линия, либо подключается параллельно другому (как в случае с Baltic Cable ).

Симметричный монополь [ править ]

Альтернативой является использование двух высоковольтных проводов, работающих примерно от половины постоянного напряжения, с одним преобразователем на каждом конце. В этом устройстве, известном как симметричный монополь , преобразователи заземлены только через высокий импеданс и отсутствует ток земли. Симметричное монопольное расположение необычно для преобразователей с линейной коммутацией ( редким примером является межсоединение NorNed ), но очень часто встречается с преобразователями с источником напряжения, когда используются кабели.

Биполярный [ править ]

Блок-схема биполярной системы, которая также имеет возврат на землю

При биполярной передаче используется пара проводников, каждый с высоким потенциалом относительно земли, с противоположной полярностью. Поскольку эти проводники должны быть изолированы на полное напряжение, стоимость линии передачи выше, чем монополя с обратным проводником. Однако у биполярной передачи есть ряд преимуществ, которые делают ее привлекательным вариантом.

  • При нормальной нагрузке протекает незначительный ток заземления, как в случае монополярной передачи с металлическим заземлением. Это снижает возвратные потери земли и воздействие на окружающую среду.
  • Когда в линии возникает короткое замыкание, с электродами заземления, установленными на каждом конце линии, примерно половина номинальной мощности может продолжать течь, используя землю в качестве обратного пути, работая в монополярном режиме.
  • Поскольку для данной общей номинальной мощности каждый проводник биполярной линии пропускает только половину тока монополярной линии, стоимость второго проводника снижается по сравнению с монополярной линией того же номинала.
  • В очень неблагоприятной местности второй проводник может проводиться на независимом наборе опор передачи, так что некоторая мощность может продолжать передаваться, даже если одна линия повреждена.

Биполярная система также может быть установлена ​​с металлическим заземляющим проводом.

Биполярные системы могут выдерживать до 4 ГВт при напряжении ± 660 кВ с одним преобразователем на полюс, как на проекте Ниндун – Шаньдун в Китае. Преобразователи для этого проекта с номинальной мощностью 2000 МВт на 12-импульсный преобразователь были (по состоянию на 2010 год) самыми мощными преобразователями HVDC из когда-либо созданных. [43] Еще более высокие мощности могут быть достигнуты путем последовательного соединения двух или более двенадцатиимпульсных преобразователей на каждом полюсе, как это используется в китайском проекте Сянцзяба-Шанхай с напряжением 800 кВ , в котором используются два моста двенадцатиимпульсных преобразователей на каждом полюсе. , каждая рассчитана на 400 кВ постоянного тока и 1600 МВт.

Подводные кабельные установки, первоначально введенные в эксплуатацию как монопольные, могут быть модернизированы дополнительными кабелями и работать как двухполюсные.

Блок-схема биполярной системы передачи HVDC между двумя станциями, обозначенными A и B. AC - представляет сеть переменного тока. CON - представляет вентиль преобразователя, выпрямитель или инвертор , TR представляет собой силовой трансформатор , DCTL - это передача постоянного тока. линейный проводник, DCL - это индуктор фильтра постоянного тока , BS - обходной переключатель, а PM - схемы коррекции коэффициента мощности и фильтра гармоник, необходимые на обоих концах линии. Линия передачи постоянного тока может быть очень короткой в ​​прямом соединении или простираться на сотни миль (км) над головой, под землей или под водой. Один провод линии постоянного тока можно заменить подключением к заземлению .

Биполярная схема может быть реализована так, чтобы можно было изменять полярность одного или обоих полюсов. Это позволяет работать как два параллельных монополя. Если один из проводов выходит из строя, передача может продолжаться с пониженной мощностью. Потери могут увеличиться, если заземляющие электроды и линии не рассчитаны на дополнительный ток в этом режиме. Для уменьшения потерь в этом случае могут быть установлены промежуточные коммутационные станции, на которых можно отключать или распараллеливать линейные участки. Это было сделано на ВЛ постоянного тока Инга – Шаба .

Спина к спине [ править ]

Спина к спине станции (или B2B для краткости) представляет собой растение , в котором оба преобразователя находятся в одной и той же области, как правило , в том же здании. Длина линии постоянного тока должна быть как можно короче. Двухкомпонентные станции HVDC используются для

  • соединение электрических сетей с разными частотами (как в Японии и Южной Америке ; и соединение GCC между ОАЭ (50 Гц) и Саудовской Аравией (60 Гц), завершенное в 2009 году)
  • соединение двух сетей с одинаковой номинальной частотой, но без фиксированного соотношения фаз (как до 1995/96 г. в Этценрихте , Дюрнроре , Вена , и по схеме ВНПТ в Выборге ).
  • другая частота и количество фаз (например, для замены установок с преобразователями тягового тока )

Напряжение постоянного тока в промежуточной цепи может быть свободно выбрано на подстанциях HVDC, подключенных друг к другу, из-за небольшой длины проводника. Напряжение постоянного тока обычно выбирается как можно более низким, чтобы построить небольшой вентильный зал и уменьшить количество тиристоров, соединенных последовательно в каждом вентиле. По этой причине на станциях с обратной связью HVDC используются клапаны с наивысшим доступным номинальным током (в некоторых случаях до 4500 А).

Многопозиционные системы [ править ]

Наиболее распространенная конфигурация линии HVDC состоит из двух преобразовательных подстанций, соединенных воздушной линией электропередачи или подводным кабелем.

Многоконтактные линии HVDC, соединяющие более двух точек, встречаются редко. Конфигурация нескольких клемм может быть последовательной, параллельной или гибридной (смесь последовательной и параллельной). Параллельная конфигурация обычно используется для станций большой мощности, а последовательная - для станций меньшей мощности. Примером может служить открытая в 1992 году система электропередачи Квебек - Новая Англия мощностью 2000 МВт , которая в настоящее время является крупнейшей многополюсной системой HVDC в мире. [44]

Многоконтактные системы трудно реализовать с использованием преобразователей с линейной коммутацией, поскольку реверсирование мощности осуществляется путем изменения полярности напряжения постоянного тока, что влияет на все преобразователи, подключенные к системе. В преобразователях с источником напряжения реверс мощности достигается за счет изменения направления тока, что значительно упрощает управление системами с несколькими клеммами, соединенными параллельно. По этой причине ожидается, что в ближайшем будущем многотерминальные системы станут гораздо более распространенными.

Китай расширяет свою сеть, чтобы не отставать от растущего спроса на электроэнергию, одновременно решая экологические задачи. В 2011 году компания China Southern Power Grid приступила к реализации пилотного проекта VSC HVDC с тремя терминалами. Проектные мощности проекта составляют ± 160 кВ / 200 МВт - 100 МВт - 50 МВт и будут использоваться для передачи энергии ветра, вырабатываемой на острове Нанао, на материковую часть провинции Гуандун. сеть через 32 км комбинации сухопутных кабелей HVDC, морских кабелей и воздушных линий. Этот объект сдан в эксплуатацию 19 декабря 2013 года. [45]

В Индии проект мульти-терминала Северо-Восточная Агра планируется ввести в эксплуатацию в 2015–2017 годах. Он рассчитан 6000 МВт, и он передает мощность на ± 800 кВ биполярной линии от двух преобразовательных подстанций, в Biswanath Chariali и Alipurduar , на востоке к преобразователю в Агре , на расстоянии 1728 км. [46]

Другие аранжировки [ править ]

Кросс-Скагеррак состоял с 1993 года из 3 полюсов, из которых 2 были включены параллельно, а третий использовал противоположную полярность с более высоким напряжением передачи. Эта конфигурация закончилась в 2014 году, когда полюса 1 и 2 снова были перестроены для работы в биполе, а полюс 3 (LCC) работал в биполе с новым полюсом 4 (VSC). Это первая передача HVDC, в которой полюса LCC и VSC соединяются в биполе.

Похожая схема была у HVDC Inter-Island в Новой Зеландии после увеличения мощности в 1992 году, в которой два оригинальных преобразователя (с использованием ртутно-дуговых вентилей) включались параллельно, питая один и тот же полюс, а новый третий (тиристорный) преобразователь был установлен с противоположная полярность и более высокое рабочее напряжение. Эта конфигурация закончилась в 2012 году, когда два старых преобразователя были заменены одним новым тиристорным преобразователем.

Схема, запатентованная в 2004 г. [47] , предназначена для преобразования существующих линий электропередачи переменного тока в HVDC. Два из трех проводников цепи работают как биполярные. Третий провод используется как параллельный монополь, снабженный реверсивными клапанами (или параллельными клапанами, подключенными с обратной полярностью). Это позволяет передавать более сильные токи по бипольным проводникам и полностью использовать установленный третий проводник для передачи энергии. Сильные токи могут циркулировать по линейным проводам даже при низкой нагрузке для удаления льда. По состоянию на 2012 год трехполюсные преобразования не выполняются, хотя линия передачи в Индии была преобразована в двухполюсную HVDC ( HVDC Sileru-Barsoor ).

Коронный разряд [ править ]

Коронный разряд - это создание ионов в жидкости (например, в воздухе ) под действием сильного электрического поля . Электроны отрываются от нейтрального воздуха, и положительные ионы или электроны притягиваются к проводнику, а заряженные частицы дрейфуют. Этот эффект может вызвать значительную потерю мощности, создать звуковые и радиочастотные помехи, вызвать образование токсичных соединений, таких как оксиды азота и озона, и вызвать искрение.

Линии передачи переменного и постоянного тока могут генерировать короны, в первом случае в виде колеблющихся частиц, во втором - постоянный ветер. Из-за пространственного заряда, образованного вокруг проводников, система HVDC может иметь примерно половину потерь на единицу длины системы переменного тока высокого напряжения, несущей такое же количество энергии. При монополярной передаче выбор полярности проводника под напряжением приводит к некоторой степени контроля над коронным разрядом. В частности, можно контролировать полярность испускаемых ионов, что может оказывать воздействие на окружающую среду при образовании озона. Отрицательные короны генерируют значительно больше озона, чем положительные , и генерируют его дальше по ветру.линии электропередачи, создавая потенциальные последствия для здоровья. Использование положительного напряжения снизит воздействие озона на монопольные линии электропередачи постоянного тока высокого напряжения.

Приложения [ править ]

Обзор [ править ]

Управляемость протекания тока через выпрямители и инверторы HVDC, их применение для соединения несинхронизированных сетей и их применение в эффективных подводных кабелях означает, что соединения HVDC часто используются на национальных или региональных границах для обмена мощностью (в Северной Америке HVDC соединения делят большую часть Канады и Соединенных Штатов на несколько электрических регионов, которые пересекают национальные границы, хотя цель этих соединений по-прежнему состоит в соединении несинхронизированных сетей переменного тока друг с другом). Морские ветряные электростанции также требуют подводных кабелей и их турбин.не синхронизированы. В соединениях на очень большие расстояния между двумя точками, например, при передаче электроэнергии от большой гидроэлектростанции на удаленном участке в городскую зону, можно надлежащим образом использовать системы передачи постоянного тока высокого напряжения; построено несколько таких схем. Что касается присоединения к Сибири , Канаде , Индии и Скандинавскому Северу, снижение линейных затрат на HVDC также делает его применимым, см. Список проектов HVDC . Другие приложения отмечены в этой статье.

Сетевые соединения переменного тока [ править ]

Линии передачи переменного тока могут соединять между собой только синхронизированные сети переменного тока с одинаковой частотой с ограничениями на допустимую разность фаз между двумя концами линии. Многие области, которые хотят разделить электроэнергию, имеют несинхронизированные сети. Электросети Великобритании , Северной Европы и континентальной Европы не объединены в единую синхронизированную сеть. В Японии есть сети 50 Гц и 60 Гц. Континентальная Северная Америка, работающая с частотой 60 Гц, разделена на несинхронизированные регионы: Восток , Запад , Техас , Квебек и Аляска . Бразилия и Парагвай, которые разделяют огромную гидроэлектростанцию плотины Итайпу , работают на частоте 60 Гц и 50 Гц соответственно. Однако системы HVDC позволяют объединять несинхронизированные сети переменного тока, а также добавляют возможность управления напряжением переменного тока и потоком реактивной мощности.

Генератор подключен к длинной линии передачи переменного тока может стать нестабильной и выпасть из синхронизации с отдаленной системы переменного тока. Линия передачи HVDC может сделать экономически целесообразным использование удаленных участков генерации. Ветряные электростанции, расположенные вдали от берега, могут использовать системы HVDC для сбора энергии от нескольких несинхронизированных генераторов для передачи на берег по подводному кабелю. [48]

В целом, однако, линия электропередачи HVDC будет соединять две области переменного тока распределительной сети. Оборудование для преобразования переменного тока в постоянный значительно увеличивает стоимость передачи электроэнергии. Преобразование переменного тока в постоянный называется выпрямлением , а из постоянного в переменный - инверсией . При превышении определенного расстояния безубыточности (около 50 км для подводных кабелей и, возможно, 600–800 км для воздушных кабелей) более низкая стоимость электрических проводов постоянного тока высокого напряжения перевешивает стоимость электроники.

Преобразовательная электроника также дает возможность эффективно управлять электросетью посредством управления величиной и направлением потока мощности. Таким образом, дополнительным преимуществом существования линий постоянного тока высокого напряжения является потенциально повышенная стабильность в сети передачи.

Возобновляемые электрические магистрали [ править ]

Две линии HVDC пересекаются возле Wing, Северная Дакота .

Ряд исследований выявили потенциальные преимущества суперсетей очень большой площади, основанных на HVDC, поскольку они могут смягчить эффекты прерывистости путем усреднения и сглаживания выходных данных большого количества географически разбросанных ветряных ферм или солнечных ферм. [49] В исследовании Чиша делается вывод, что сеть, охватывающая окраины Европы, может обеспечить 100% возобновляемую энергию (70% ветра, 30% биомассы) по ценам, близким к сегодняшним. Были дебаты по поводу технической осуществимости этого предложения [50] и политических рисков, связанных с передачей энергии через большое количество международных границ. [51]

Строительство таких «зеленых » магистралей энергии пропагандируется в официальном документе, который был выпущен Американской ассоциацией ветроэнергетики и Ассоциацией предприятий солнечной энергетики в 2009 году. [52] Clean Line Energy Partners разрабатывает в США четыре линии HVDC для электроснабжения на большие расстояния. передача энергии. [53]

В январе 2009 года Европейская комиссия предложила 300 миллионов евро для субсидирования развития линий постоянного тока высокого напряжения между Ирландией, Великобританией, Нидерландами, Германией, Данией и Швецией в рамках более широкого пакета стоимостью 1,2 миллиарда евро, поддерживающего связь с оффшорными ветряными электростанциями и перекрестками. -границы интерконнекторов по всей Европе. Между тем, недавно созданный Союз Средиземноморья принял Средиземноморский план развития солнечной энергии, чтобы импортировать большие объемы концентрированной солнечной энергии в Европу из Северной Африки и Ближнего Востока. [54]

Достижения в UHVDC [ править ]

UHVDC (сверхвысокое напряжение постоянного тока) становится новейшим технологическим фронтом в технологии передачи постоянного тока высокого напряжения. UHVDC определяется как передача постоянного напряжения выше 800 кВ (HVDC обычно составляет от 100 до 800 кВ).

Одна из проблем современных суперсетей сверхвысокого напряжения постоянного тока заключается в том, что они, хотя и меньше, чем передача переменного тока или передача постоянного тока при более низких напряжениях, по-прежнему страдают от потери мощности при увеличении длины. Типичные потери для линий 800 кВ составляют 2,6% на 800 км. [55] Повышение напряжения передачи на таких линиях снижает потери мощности, но до недавнего времени соединители, необходимые для соединения сегментов, были чрезмерно дорогими. Однако с развитием производства становится все более целесообразным строительство линий сверхвысокого напряжения постоянного тока.

В 2010 году группа компаний ABB построила первый в мире сверхвысокого напряжения постоянного тока 800 кВ в Китае. Линия сверхвысокого напряжения постоянного тока Чжундун – Ваннань мощностью 1100 кВ, протяженностью 3400 км и мощностью 12 ГВт была завершена в 2018 году. По состоянию на 2020 год было завершено строительство как минимум тринадцати линий электропередачи постоянного тока сверхвысокого напряжения в Китае .

Хотя большая часть технологий UHVDC в последнее время развернута в Китае, они также были развернуты в Южной Америке, а также в других частях Азии. В Индии 1830 км, 800 кВ, 6 ГВт линия между Райгарх и Pugalur , как ожидается, будет завершена в 2019. [56] В Бразилии, линия Шингу-Estreito более 2076 км с 800 кВ и 4 ГВт было завершено в 2017 году. По состоянию на 2020 год в Европе или Северной Америке нет линии сверхвысокого напряжения постоянного тока (≥ 800 кВ).

См. Также [ править ]

  • Преобразователь постоянного тока в постоянный
  • Электродная линия
  • Европейская супер сетка
  • Гибкая система передачи переменного тока
  • Высоковольтный кабель
  • Список проектов HVDC - список проектов HVDC в истории, в текущей эксплуатации и в стадии строительства
  • Подводный силовой кабель
  • Башня передачи
  • Клапанный зал

Ссылки [ править ]

  1. ^ "ABB открывает эру мощных супермагистралей" . Архивировано из оригинала на 2015-10-16 . Проверено 21 июля 2015 .
  2. ^ «Супермагистраль ветроэнергетики может помочь превратить Panhandle в энергетический центр США» .
  3. ^ Sovacool, Бенджамин К .; Купер, CJ (1 июля 2013 г.). Управление энергетическими мегапроектами: политика, гордыня и энергетическая безопасность . ISBN 9781781952542.
  4. ^ Arrillaga, Джос; Передача постоянного тока высокого напряжения, второе издание, Институт инженеров-электриков, ISBN 0 85296 941 4 , 1998. 
  5. ^ "Чанцзи-Гуцюань ± 1100 кВ Проект передачи постоянного тока сверхвысокого напряжения начинает передачу энергии" . SGCC . Архивировано из оригинального 27 января 2020 года . Проверено 26 января 2020 года .
  6. ^ «АББ выигрывает заказы на сумму более 300 миллионов долларов на первую в мире линию электропередачи сверхвысокого напряжения постоянного тока на 1100 кВ в Китае» . abb.com . 2016-07-19 . Проверено 13 марта 2017 .
  7. ^ Hingorani, NG (1996). «Высоковольтная передача постоянного тока: рабочая лошадка силовой электроники». IEEE Spectrum . 33 (4): 63–72. DOI : 10.1109 / 6.486634 .
  8. ABB HVDC. Архивировано 06 декабря 2011 г. с веб-сайта Wayback Machine .
  9. ^ Хьюз, Томас Парк (1993). Сети власти: электрификация в западном обществе, 1880–1930. Балтимор, Мэриленд: Издательство Университета Джона Хопкинса. ISBN 978-0-80182-873-7 , страницы 120-121 
  10. ^ a b Хосе Аррильяга; Юнхэ Х. Лю; Невилл Р. Уотсон; Николас Дж. Мюррей (9 октября 2009 г.). Самокоммутирующиеся преобразователи для приложений большой мощности . Джон Уайли и сыновья. ISBN 978-0-470-74682-0. Проверено 9 апреля 2011 года .
  11. ^ a b c Guarnieri, M. (2013). «Альтернативная эволюция передачи постоянного тока». Журнал IEEE Industrial Electronics Magazine . 7 (3): 60–63. DOI : 10.1109 / MIE.2013.2272238 . S2CID 23610440 . 
  12. ^ Дональд Бити и др., «Стандартное руководство для инженеров-электриков, 11-е изд.», McGraw Hill, 1978
  13. ^ Информация об изоляторе ACW - Справочная информация по книге - История электрических систем и кабелей
  14. ^ RM Black История электрических проводов и кабелей , Питер Перигринус, Лондон, 1983 ISBN 0-86341-001-4, страницы 94–96 
  15. Перейти ↑ Alfred Still, Overhead Electric Power Transmission , McGraw Hill, 1913, стр.145, доступно из Интернет-архива.
  16. ^ "Формирование инструментов конкурентной власти"
  17. Томас П. Хьюз, Сети власти
  18. ^ Риссик, Х., Преобразователи тока ртутно-дуговые, Pitman. 1941, глава IX.
  19. ^ "Передача HVDCF"
  20. IEEE - Центр истории IEEE. Архивировано 6 марта 2006 г., на Wayback Machine.
  21. ^ Когл, TCJ, Проект реки Нельсон - Manitoba Hydro эксплуатирует субарктические гидроэнергетические ресурсы, Electrical Review, 23 ноября 1973 г.
  22. ^ https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2017/energymanagement/pr2017080410emen.htm&content [] = Компания EM Siemens ремонтирует 15 преобразовательных трансформаторов на линии связи HVDC в Кахора-Басса в Мозамбике , восстановлено 2019 Янв 24
  23. ^ "Siemens AG - Система передачи Ultra HVDC" . Архивировано из оригинала на 2018-05-25 . Проверено 25 мая 2018 .
  24. ^ Ског, JE, ван Астен, Х., Worzyk Т., Andersrød Т., Norned -миредлинный кабель питания, СИГРЭ сессия, Париж, 2010, бумага ссылка B1-106.
  25. ^ "Архивная копия" . Архивировано из оригинала на 2017-04-15 . Проверено 3 февраля 2017 .CS1 maint: заархивированная копия как заголовок ( ссылка )
  26. ^ Сайт Basslink
  27. ^ Веб-сайт ABB HVDC
  28. ^ [1] Архивировано 4 сентября 2015 г. свеб-сайта Wayback Machine.
  29. ^ Дональд Г. Финк, Х. Уэйн Битти, Стандартное руководство для инженеров-электриков, 11-е издание , McGraw Hill, 1978, ISBN 0-07-020974-X , страницы 15-57 и 15-58 
  30. ^ «Классическая надежность и доступность HVDC» . ABB . Архивировано из оригинала на 30 марта 2010 года . Проверено 14 июня 2019 .
  31. ^ «Проектирование, моделирование и управление системами HVDC на основе модульных многоуровневых преобразователей. - Цифровой репозиторий NCSU» . www.lib.ncsu.edu . Проверено 17 апреля 2016 .
  32. Дональд Г. Финк и Х. Уэйн Бити (25 августа 2006 г.). Стандартный справочник для инженеров-электриков . McGraw-Hill Professional. стр.  14 -37 уравнение 14-56. ISBN 978-0-07-144146-9.
  33. ^ "Передача HVDC Квебек - Новая Англия" . ABB Asea Brown Boveri . Архивировано из оригинала 5 марта 2011 года . Проверено 12 декабря 2008 .
  34. ^ Корсиканский отвод: от проектирования до пусконаладочных испытаний третьего терминала HVDC Сардиния-Корсика-Италия Billon, VC; Taisne, JP; Arcidiacono, V .; Mazzoldi, F .; Поставка питания, транзакции IEEE в томе 4, выпуске 1, январь 1989 г. Стр .: 794–799
  35. ^ «АББ решает электрическую загадку столетней давности - новая технология, позволяющая создать сеть постоянного тока будущего» . ABB. 7 ноября 2012 . Проверено 11 ноября 2012 года .
  36. ^ а б Каллавик, Магнус; Бломберг, Андерс; Хефнер, Юрген; Якобсон, Бьорн (ноябрь 2012 г.), Гибридный выключатель постоянного тока постоянного тока: инновационный прорыв для надежных сетей постоянного тока высокого напряжения (PDF) , ABB Grid Systems , дата обращения 18 ноября 2012 г.
  37. ^ Источник работает в известной британской инженерной консалтинговой компании, но пожелал остаться неизвестным и является членом Claverton Energy Research Group.
  38. ^ Испания вложит значительные средства в модернизацию передающей сети в течение следующих пяти лет | CSP Today Архивировано 05.10.2011, Wayback Machine . Social.csptoday.com (01.04.2010). Проверено 9 апреля 2011.
  39. ^ Руководство по спецификации и оценке конструкции фильтров переменного тока для систем HVDC,Техническая брошюра СИГРЭ № 139, 1999.
  40. ^ Боковые гармоники постоянного тока и фильтрация в системах передачи HVDC,Техническая брошюра СИГРЭ № 092, 1995.
  41. ^ Basslink проект архивации 13 сентября 2003, в Wayback Machine
  42. ^ Siemens AG - сайт HVDC [ мертвая ссылка ]
  43. ^ Дэвидсон, CC; Preedy, RM; Cao, J .; Чжоу, C .; Фу Дж. (Октябрь 2010 г.). Тиристорные клапаны сверхвысокой мощности для HVDC в развивающихся странах . 9-я Международная конференция по передаче электроэнергии постоянного и переменного тока. Лондон: IET . DOI : 10,1049 / cp.2010.0974 .
  44. ^ Веб-сайт ABB HVDC Transmission Québec - New England [ мертвая ссылка ]
  45. Три терминала VSC HVDC в Китае. Архивировано 8 февраля 2014 г., на Wayback Machine.
  46. ^ Изменения в multterminal ППТ, извлекаемые 2014 17 марта
  47. ^ "Модуляция тока линий электропередачи постоянного тока - БАРТОЛЬД ЛИОНЕЛ О." FPO IP Research & сообщества . 30 марта 2004 . Проверено 19 июля 2018 года .
  48. Шульц, Маттиас, «Немецкое наступление на морское фиаско с ветром в Северном море, измученное проблемами» , Der Spiegel , 4 сентября 2012 г. «Преобразовательные подстанции HVDC вызывают самые большие проблемы». Проверено 13 ноября 2012.
  49. ^ Грегор Чиш (2008-10-24). «Низкозатратная, но полностью возобновляемая поставка электроэнергии для огромной территории - европейский / трансъевропейский пример -» (PDF) . 2008 Claverton энергетическая конференция . Кассельский университет . Архивировано из оригинального (PDF) 04.03.2009 . Проверено 16 июля 2008 . Документ был представлен на конференции Claverton Energy в Бате 24 октября 2008 г. Сводка статьи
  50. ^ Миф о технической неосуществимости сложных многотерминальных HVDC и идеологических барьерах для обмена электроэнергией между странами - Czisch | Claverton Group . Claverton-energy.com. Проверено 9 апреля 2011.
  51. ^ Европейская суперсеть и импорт энергии из возобновляемых источников - «смехотворно предполагать, что это сделает Европу более уязвимой» -? | Claverton Group . Claverton-energy.com. Проверено 9 апреля 2011.
  52. Green Power Superhighways: Building a Path to America's Clean Energy Future Архивировано 20 апреля 2017 г. в Wayback Machine , февраль 2009 г.
  53. ^ Проекты передачи HVDC | Партнеры Clean Line Energy
  54. Дэвид Страхан "Зеленые сетки", новый ученый, 12 марта 2009 г.
  55. ^ https://www.siemens.com/press/pool/de/events/2012/energy/2012-07-wismar/factsheet-hvdc-e.pdf
  56. ^ https://www.tdworld.com/overhead-transmission/article/20967567/india-to-build-longest-800kv-uhvdc-transmission-line

Дальнейшее чтение [ править ]

  • Кимбарк, EW, Передача постоянного тока, том 1, Wiley Interscience, 1971.
  • Кори, Б.Дж., Адамсон, К., Эйнсворт, Д.Д., Фрерис, Л.Л., Функе, Б., Харрис, Лос-Анджелес, Сайкс, Д.Х.М., Высоковольтные преобразователи постоянного тока и системы, Macdonald & Co. (publishers) Ltd, 1965.

Внешние ссылки [ править ]

  • Амбициозный план Китая по созданию крупнейшей в мире суперсети, IEEE Spectrum (2019)
  • [ Https://web.archive.org/web/ished по Международному совету по большим электрическим системам (СИГРЭ)
  • Веб-сайт ABB HVDC
  • Веб-сайт GE Grid Solutions HVDC
  • Информационный документ Всемирного банка о системах HVDC
  • HVDC PLUS от Siemens [ постоянная мертвая ссылка ]
  • Объяснение проблем UHVDC от Siemens
  • Centro Elettrotecnico Sperimentale Italiano (CESI)
  • Статья Windpowerengineering.com под названием «Отчет: к 2020 году объем преобразователей HVDC во всем мире достигнет 89,6 миллиарда долларов», автор Пол Дворжак, от 18 сентября 2013 года.
  • Устранение сбоев коммутации с помощью "Гибкого LCC HVDC" объяснено
  • Объяснение управления реактивной мощностью и напряжением с помощью «Flexible LCC HVDC»