Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Сочлененный промышленный робот, работающий в литейном производстве.

Промышленный робот является роботом система , используемая для изготовления . Промышленные роботы автоматизированы, программируются и могут перемещаться по трем и более осям. [1]

Типичные области применения включают в себя роботов сварки , покраска, сборка, разборка , [2] выбрать и место для печатных плат , упаковки и маркировки , штабелирования , контроль продукции, и испытания; все выполнено с высокой выносливостью, скоростью и точностью. Они могут помочь в транспортировке материалов .

По данным Международной федерации робототехники (IFR), в 2020 году во всем мире работало около 1,64 миллиона промышленных роботов . [3]

Типы и особенности [ править ]

Набор шестиосевых роботов, используемых для сварки .
Автоматизация производства с помощью промышленных роботов для паллетирования пищевых продуктов, таких как хлеб и тосты, на пекарне в Германии

Есть шесть типов промышленных роботов. [4]

Сочлененные роботы [ править ]

Шарнирно-сочлененные роботы [4] - самые распространенные промышленные роботы. [5] Они похожи на человеческую руку , поэтому их также называют роботизированной рукой или рукой манипулятора . [6] Их шарнирное соединение с несколькими степенями свободы позволяет шарнирно-сочлененным рукам иметь широкий диапазон движений.

Роботы с декартовой системой координат [ править ]

Декартовы роботы [4], также называемые прямолинейными, портальными роботами и роботами xyz [5], имеют три призматических шарнира для перемещения инструмента и три шарнирных соединения для его ориентации в пространстве.

Чтобы иметь возможность перемещать и ориентировать эффекторный орган во всех направлениях, такому роботу необходимо 6 осей (или степеней свободы). В двумерной среде достаточно трех осей: двух для смещения и одной для ориентации. [7]

Цилиндрические координатные роботы [ править ]

В цилиндрических координатах роботы [4] характеризуются их шарниром в основании и по меньшей мере один призматический сустав , соединяющий его связи. [5] Они могут двигаться вертикально и горизонтально, скользя. Компактная конструкция исполнительного механизма позволяет роботу достигать ограниченного рабочего пространства без потери скорости. [5]

Сферические координатные роботы [ править ]

Сферические координатные роботы имеют только поворотные шарниры. [4] Это одни из первых роботов, которые использовались в промышленности. [5] Они обычно используются для обслуживания машин при литье под давлением, литье пластмасс под давлением и экструзии, а также для сварки. [5]

Роботы SCARA [ править ]

SCARA [4] - это аббревиатура от «Выборочная сборка робота-манипулятора». [8] Роботов SCARA можно узнать по двум параллельным шарнирам, которые обеспечивают движение в плоскости XY. [4] Вращающиеся валы расположены вертикально на эффекторе.

Роботы SCARA используются для работ, требующих точных боковых перемещений. Они идеально подходят для сборки. [5]

Роботы Delta [ править ]

Роботы Delta [4] также называются роботами с параллельным соединением. [5] Они состоят из параллельных звеньев, подключенных к общей базе. Роботы Delta особенно полезны для задач прямого управления и операций с высоким маневрированием (таких как задачи быстрого захвата и размещения). Роботы Delta используют систему четырех стержневых или параллелограммных рычагов.


Кроме того, промышленные роботы могут иметь последовательную или параллельную архитектуру.

Серийные манипуляторы [ править ]

Серийные архитектуры, также известные как последовательные манипуляторы, являются наиболее распространенными промышленными роботами, и они спроектированы как серия звеньев, соединенных приводными в действие двигателями соединениями, которые простираются от основания до рабочего органа. SCARA, манипуляторы Stanford - типичные примеры этой категории.

Параллельная архитектура [ править ]

Параллельный манипулятор сконструирован таким образом, что каждая цепь обычно короткая, простая и, таким образом, может быть жесткой против нежелательного перемещения по сравнению с последовательным манипулятором . Ошибки в позиционировании одной цепочки усредняются вместе с другими, а не накапливаются. Каждый исполнительный механизм должен по-прежнему двигаться в пределах своей степени свободы , как в случае серийного робота; однако в параллельном роботе внеосевая гибкость сустава также ограничивается влиянием других цепей. Именно эта жесткость замкнутого контура делает общий параллельный манипулятор жестким по сравнению с его компонентами, в отличие от последовательной цепи, которая становится все менее жесткой с увеличением количества компонентов.

Параллельные манипуляторы с меньшей подвижностью и сопутствующие движения [ править ]

Полностью параллельный манипулятор может перемещать объект с 6 степенями свободы (DoF), определяемыми координатами 3 перемещения 3T и 3 вращения 3R для полной подвижности 3T3R м . Однако, когда задача манипуляции требует менее 6 степеней свободы, использование манипуляторов с меньшей подвижностью и менее 6 степеней свободы может дать преимущества с точки зрения более простой архитектуры, более легкого управления, более быстрого движения и более низкой стоимости. Например, робот Delta с 3 степенями свободы имеет более низкие 3Tмобильность и зарекомендовала себя как очень успешная для приложений быстрого позиционирования с перемещением. Рабочее пространство манипуляторов с более низкой мобильностью может быть разделено на подпространства «движение» и «ограничение». Например, 3 координаты положения составляют подпространство движения робота с 3 степенями свободы Дельта, а 3 координаты ориентации находятся в подпространстве ограничения. Подпространство движения манипуляторов с более низкой подвижностью может быть далее разбито на независимые (желательные) и зависимые (сопутствующие) подпространства: состоящие из «сопутствующего» или «паразитного» движения, которое является нежелательным движением манипулятора. [9] Изнурительные эффекты сопутствующего движения должны быть смягчены или устранены в успешной конструкции манипуляторов с меньшей подвижностью. Например, у робота Delta нет паразитного движения, поскольку его конечный эффектор не вращается.

Автономия [ править ]

Роботы обладают разной степенью автономности . Некоторые роботы запрограммированы на верное выполнение определенных действий снова и снова (повторяющиеся действия) без изменений и с высокой степенью точности. Эти действия определяются запрограммированными процедурами, которые определяют направление, ускорение, скорость, замедление и расстояние для серии скоординированных движений.

Другие роботы гораздо более гибки в отношении ориентации объекта, на котором они работают, или даже задачи, которая должна быть выполнена на самом объекте, которую роботу, возможно, даже потребуется идентифицировать. Например, для более точного наведения роботы часто содержат подсистемы машинного зрения , действующие как их визуальные датчики, связанные с мощными компьютерами или контроллерами. [10] Искусственный интеллект или то, что его называют [ необходимо пояснение ] , становится все более важным фактором в современных промышленных роботах.

История промышленной робототехники [ править ]

Самый ранний известный промышленный робот, соответствующий определению ISO, был завершен «Биллом» Гриффитом П. Тейлором в 1937 году и опубликован в журнале Meccano Magazine в марте 1938 года. [11] [12] Подобное крану устройство было построено почти полностью с использованием деталей Meccano. , и приводится в действие одним электродвигателем. Возможны пять осей движения, включая захват и вращение . Автоматизация была достигнута с помощью перфорированной бумажной ленты для подачи питания на соленоиды, что облегчило перемещение рычагов управления крана. роботмог складывать деревянные блоки по заранее запрограммированным образцам. Количество оборотов двигателя, необходимое для каждого желаемого движения, сначала было нанесено на миллиметровую бумагу. Затем эта информация была перенесена на бумажную ленту, которая также приводилась в движение одним двигателем робота. Крис Шут построил полную копию робота в 1997 году.

Джордж Девол, ок. 1982 г.

Джордж Девол подал заявку на получение первых патентов на робототехнику в 1954 году (выдан в 1961 году). Первой компанией, которая произвела роботов, была Unimation , основанная Деволом и Джозефом Ф. Энгельбергерами в 1956 году. Роботы Unimation также назывались программируемыми машинами для переноса, поскольку их основное предназначение вначале заключалось в перемещении объектов из одной точки в другую на расстоянии менее десятка футов. или около того. Они использовали гидравлические приводы и были запрограммированы в координатах суставов , то есть углы различных суставов сохранялись во время фазы обучения и воспроизводились в процессе работы. Они были с точностью до 1/10 000 дюйма [13] (примечание: хотя точность не является подходящей мерой для роботов, обычно ее оценивают с точки зрения повторяемости - см. ниже). Позже Unimation передала лицензию на свою технологию Kawasaki Heavy Industries и GKN , производящим Unimates в Японии и Англии соответственно. Некоторое время единственным конкурентом Unimation была компания Cincinnati Milacron Inc. из Огайо . Ситуация радикально изменилась в конце 1970-х годов, когда несколько крупных японских конгломератов начали производить подобных промышленных роботов.

В 1969 году Виктор Шейнман из Стэнфордского университета изобрел Стэнфордскую руку , полностью электрический 6-осевой шарнирный робот, предназначенный для решения руки . Это позволило ему точно следовать произвольным путям в космосе и расширило потенциальное использование робота для более сложных приложений, таких как сборка и сварка. Затем Шейнман разработал вторую руку для лаборатории искусственного интеллекта Массачусетского технологического института , получившую название «рука». Шейнман, получив стипендию от Unimation для разработки своих проектов, продал эти проекты Unimation, которая доработала их при поддержке General Motors, а затем продал ее как Программируемую универсальную машину для сборки. (ПУМА).

Промышленная робототехника довольно быстро стала популярной в Европе. Компании ABB Robotics и KUKA Robotics выпустили своих роботов на рынок в 1973 году. Компания ABB Robotics (ранее ASEA) представила IRB 6, одного из первых в мире коммерчески доступных роботов, полностью управляемых электрическими микропроцессорами. Первые два робота IRB 6 были проданы компании Magnusson в Швеции для шлифовки и полировки изгибов труб и были запущены в производство в январе 1974 года. Также в 1973 году KUKA Robotics построила своего первого робота, известного как FAMULUS , [14] [15] также один из первый шарнирно-сочлененный робот с шестью осями с электромеханическим приводом.

Интерес к робототехнике увеличился в конце 1970-х, и многие американские компании вышли на рынок, в том числе такие крупные фирмы, как General Electric и General Motors (которые создали совместное предприятие FANUC Robotics с FANUC LTD из Японии). Американские стартап-компании включали Automatix и Adept Technology , Inc. На пике бума роботов в 1984 году Unimation была приобретена Westinghouse Electric Corporation за 107 миллионов долларов США. Westinghouse продал Unimation в Stäubli Faverges SCA из Франции в 1988 году, которая до сих пор делает сочлененные робот общепромышленного ичистых помещений и даже купил роботизированное подразделение Bosch в конце 2004 года.

Лишь немногие не-японские компании , в конечном счете удалось выжить на этом рынке, основными из которых являются: Адепт Technology , Штойбли , то шведская - швейцарская компания ABB Asea Браун Бовери , то немецкая компания KUKA Robotics и итальянская компания Comau .

Техническое описание [ править ]

Определение параметров [ править ]

  • Количество осей - для достижения любой точки на плоскости требуется две оси; три оси необходимы, чтобы достичь любой точки в космосе. Чтобы полностью контролировать ориентацию конца руки (то есть запястья ), требуются еще три оси ( рыскание, тангаж и крен ). Некоторые конструкции (например, робот SCARA) обменивают ограничения в возможностях движения на стоимость, скорость и точность.
  • Степени свободы - это обычно то же самое, что и количество осей.
  • Рабочий конверт - область пространства, до которой может добраться робот.
  • Кинематика - фактическое расположение жестких элементов и соединений в роботе, которое определяет возможные движения робота. Классы кинематики роботов включают шарнирную, декартовую, параллельную и SCARA.
  • Грузоподъемность или полезная нагрузка - какой вес может поднять робот.
  • Скорость - насколько быстро робот может переместить конец своей руки. Это может быть определено в терминах угловой или линейной скорости каждой оси или как составная скорость, то есть скорость конца рычага, когда все оси движутся.
  • Ускорение - насколько быстро ось может ускоряться. Поскольку это ограничивающий фактор, робот может быть не в состоянии достичь указанной максимальной скорости для перемещений на короткое расстояние или по сложному пути, требующему частой смены направления.
  • Точность - насколько близко робот может достичь заданной позиции. Когда абсолютное положение робота измеряется и сравнивается с заданным положением, ошибка является мерой точности. Точность можно повысить с помощью внешнего зондирования, например системы технического зрения или инфракрасного излучения. См. Калибровку робота . Точность может варьироваться в зависимости от скорости и положения в пределах рабочего диапазона и полезной нагрузки (см. Соответствие).
  • Повторяемость - насколько хорошо робот вернется в запрограммированное положение. Это не то же самое, что точность. Может случиться так, что при указании перейти в определенное положение XYZ он попадает только в 1 мм от этого положения. Это будет его точность, которую можно улучшить калибровкой. Но если это положение запрограммировано в память контроллера и каждый раз, когда оно отправляется туда, оно возвращается в пределах 0,1 мм от запрограммированного положения, то повторяемость будет в пределах 0,1 мм.

Точность и повторяемость - разные меры. Повторяемость обычно является наиболее важным критерием для робота и аналогична концепции «точности» в измерениях - см. Точность и прецизионность . ISO 9283 [16] устанавливает метод, с помощью которого можно измерить как точность, так и повторяемость. Обычно робота отправляют в обученную позицию несколько раз, и ошибка измеряется при каждом возврате в позицию после посещения 4 других позиций. Затем воспроизводимость количественно оценивается с использованием стандартного отклонения.этих образцов во всех трех измерениях. Типичный робот, конечно, может допустить превышение позиционной ошибки, и это может стать проблемой для процесса. Более того, повторяемость различается в разных частях рабочего диапазона, а также зависит от скорости и полезной нагрузки. ISO 9283 определяет, что точность и повторяемость следует измерять на максимальной скорости и при максимальной полезной нагрузке. Но это приводит к пессимистическим значениям, тогда как робот мог бы быть намного более точным и воспроизводимым при небольших нагрузках и скоростях. Повторяемость в промышленном процессе также зависит от точности концевого эффектора, например захвата, и даже от конструкции «пальцев», которые соответствуют захвату и захватываемому объекту. Например, если робот берет винт за голову, он может быть под произвольным углом.Последующая попытка вставить винт в отверстие может легко потерпеть неудачу. Эти и подобные сценарии можно улучшить с помощью «вводов», например, сделав вход в отверстие суженным.

  • Управление движением - для некоторых приложений, таких как простая сборка на месте, роботу нужно просто многократно возвращаться в ограниченное количество предварительно запрограммированных положений. Для более сложных применений, таких как сварка и отделка ( окраска распылением ), движение необходимо постоянно контролировать, чтобы следовать траектории в пространстве с контролируемой ориентацией и скоростью.
  • Источник питания - одни роботы используют электродвигатели , другие - гидравлические приводы. Первые быстрее, вторые сильнее и выгодны в таких применениях, как окраска распылением, где искра может вызвать взрыв ; однако низкое внутреннее давление воздуха в руке может предотвратить попадание легковоспламеняющихся паров, а также других загрязняющих веществ. В настоящее время на рынке вряд ли появятся гидравлические роботы. Дополнительные уплотнения, бесщеточные электродвигатели и искробезопасная защита упростили конструкцию агрегатов, которые могут работать во взрывоопасной среде.
  • Привод - некоторые роботы соединяют электродвигатели с шарнирами через шестерни ; другие подключают двигатель к шарниру напрямую ( прямой привод ). Использование шестерен приводит к измеримому «люфту», который представляет собой свободное движение по оси. Меньшие роботы-манипуляторы часто используют высокоскоростные двигатели постоянного тока с низким крутящим моментом, которые обычно требуют высоких передаточных чисел; недостатком этого является люфт. В таких случаях часто используется гармонический привод .
  • Податливость - это мера величины угла или расстояния, на которое ось робота будет перемещаться при приложении к ней силы. Из-за податливости, когда робот переходит в позицию с максимальной полезной нагрузкой, он будет в позиции немного ниже, чем когда он не несет никакой полезной нагрузки. Соответствие требованиям также может быть причиной перерегулирования при перевозке высоких грузов, в этом случае необходимо уменьшить ускорение.

Программирование роботов и интерфейсы [ править ]

Автономное программирование
Типичный кулон для обучения с дополнительной мышью

Настройка или программирование движений и последовательностей для промышленного робота обычно преподается путем подключения контроллера робота к портативному , настольному компьютеру или (внутренней или Интернет) сети .

Робот и набор машин или периферийных устройств упоминаются как рабочая ячейка или ячейка. Типичная ячейка может содержать устройство подачи деталей, формовочную машину и робота. Различные машины «интегрированы» и управляются одним компьютером или ПЛК . Необходимо запрограммировать то, как робот взаимодействует с другими машинами в ячейке, как в отношении их положения в ячейке, так и синхронизации с ними.

Программное обеспечение: на компьютере установлено соответствующее интерфейсное программное обеспечение. Использование компьютера значительно упрощает процесс программирования. Специализированное программное обеспечение робота запускается либо в контроллере робота, либо в компьютере, либо в обоих, в зависимости от конструкции системы.

Есть две основные сущности, которые необходимо обучить (или запрограммировать): позиционные данные и процедура. Например, в задаче по перемещению шнека из питателя в отверстие необходимо сначала запрограммировать или запрограммировать положения питателя и отверстия. Во-вторых, процедура подачи шнека из питателя в отверстие должна быть запрограммирована вместе с любыми задействованными входами / выходами, например, сигналом, указывающим, когда шнек в питателе готов к подъему. Цель программного обеспечения робота - облегчить обе эти задачи программирования.

Обучить позиции робота можно несколькими способами:

Позиционные команды Робот может быть направлен в требуемую позицию с помощью графического интерфейса пользователя или текстовых команд, в которых можно указать и отредактировать требуемое положение XYZ.

Пульт обучения: положение робота можно обучить с помощью пульта обучения . Это портативный блок управления и программирования. Общими особенностями таких устройств являются возможность вручную отправить робота в желаемое положение, или «на дюйм», или «толчок», чтобы отрегулировать положение. У них также есть средства для изменения скорости, поскольку низкая скорость обычно требуется для осторожного позиционирования или во время пробного запуска новой или измененной процедуры. Обычно в комплект входит большая кнопка аварийного останова . Обычно после того, как робот запрограммирован, пульт обучения больше не используется. Все обучающие подвески оснащены 3-х позиционным переключателем.. В ручном режиме он позволяет роботу двигаться только тогда, когда он находится в среднем положении (частично нажат). Если он полностью вдавлен или полностью отпущен, робот останавливается. Такой принцип работы позволяет использовать естественные рефлексы для повышения безопасности.

Ведущий за носом: это метод, предлагаемый многими производителями роботов. В этом методе один пользователь держит манипулятор робота, в то время как другой человек вводит команду, которая обесточивает робота, заставляя его хромать. Затем пользователь вручную перемещает робота в требуемые позиции и / или по требуемому пути, в то время как программное обеспечение регистрирует эти позиции в памяти. Программа может позже запустить робота в эти позиции или по заданной траектории. Этот метод популярен для таких задач, как распыление краски .

Автономное программирование - это когда вся ячейка, робот и все машины или инструменты в рабочей области отображаются графически. Затем робота можно перемещать по экрану и моделировать процесс. Симулятор робототехники используется для создания встроенных приложений для робота, независимо от физической работы манипулятора робота и конечного эффектора. Преимущества моделирования робототехники заключаются в том, что оно экономит время при разработке приложений для робототехники. Это также может повысить уровень безопасности, связанный с роботизированным оборудованием, поскольку различные сценарии «что, если» могут быть опробованы и протестированы до активации системы. [8] Программное обеспечение для моделирования роботов предоставляет платформу для обучения, тестирования, запуска и отладки программ, написанных на различных языках программирования.

Симулятор робототехники

Инструменты моделирования роботов позволяют удобно писать и отлаживать программы робототехники в автономном режиме с окончательной версией программы, протестированной на реальном роботе. Возможность предварительного просмотра поведения роботизированной системы в виртуальном мире позволяет опробовать и протестировать различные механизмы, устройства, конфигурации и контроллеры перед их применением в системе «реального мира». Симуляторы робототехники могут обеспечивать вычисление в реальном времени имитируемого движения промышленного робота с использованием как геометрического, так и кинематического моделирования.

Производство независимых инструментов программирования роботов - относительно новый, но гибкий способ программирования приложений роботов. Используя графический пользовательский интерфейс, программирование выполняется перетаскиванием предварительно определенного шаблона / строительных блоков. Они часто включают выполнение моделирования для оценки осуществимости и автономного программирования в сочетании. Если система способна компилировать и загружать собственный код робота в контроллер робота, пользователю больше не нужно изучать частный язык каждого производителя . Следовательно, этот подход может стать важным шагом на пути к стандартизации методов программирования.

Другие Кроме того, операторы машины часто используют пользовательский интерфейс устройства, как правило , с сенсорным экраном единиц, которые служат в качестве панели управления оператора. Оператор может переключаться от программы к программе, вносить изменения в программу, а также управлять множеством периферийных устройств, которые могут быть интегрированы в одну и ту же роботизированную систему. К ним относятся концевые эффекторы , питатели, которые поставляют компоненты роботу, конвейерные ленты , органы управления аварийной остановкой, системы машинного зрения, системы блокировки безопасности , принтеры штрих-кодов и почти бесконечное множество других промышленных устройств, доступ к которым и управление которыми осуществляется с панели управления оператора.

Подвесной пульт обучения или ПК обычно отключаются после программирования, и затем робот запускает программу, установленную в его контроллере . Однако компьютер часто используется для «наблюдения» за роботом и любыми периферийными устройствами или для обеспечения дополнительного хранилища для доступа к многочисленным сложным путям и процедурам.

Инструменты на конце руки [ править ]

Наиболее важным периферийным устройством робота является концевой эффектор или инструмент на конце руки (EOT). Общие примеры концевых эффекторов включают сварочные устройства (такие как сварочные пистолеты MIG, аппараты для точечной сварки и т. Д.), Пистолеты-распылители, а также устройства для шлифования и удаления заусенцев (например, пневматические дисковые или ленточные шлифовальные машины, заусенцы и т. Д.) И захватные устройства ( устройства, способные захватить объект, обычно электромеханические или пневматические ). Другими распространенными способами сбора предметов являются вакуум или магниты . Концевые эффекторы часто очень сложны, сделаны так, чтобы соответствовать обрабатываемому продукту и часто способны захватывать множество продуктов одновременно. Они могут использовать различные датчики, чтобы помочь роботизированной системе в обнаружении, перемещении и позиционировании продуктов.

Управление движением [ править ]

Для данного робота единственными параметрами, необходимыми для полного определения положения рабочего органа (захват, сварочная горелка и т. Д.) Робота, являются углы каждого из сочленений или смещения линейных осей (или их комбинации для таких форматов роботов, как как СКАРА). Однако есть много разных способов определения точек. Наиболее распространенный и удобный способ определения точки - это указать для нее декартову координату , то есть положение «конечного эффектора» в мм в направлениях X, Y и Z относительно исходной точки робота. Кроме того, в зависимости от типов шарниров, которые может иметь конкретный робот, также необходимо указать ориентацию концевого эффектора по рысканию, тангажу и крену, а также положение точки инструмента относительно лицевой панели робота. Для суставной рукиэти координаты должны быть преобразованы в углы суставов контроллером робота, и такие преобразования известны как декартовы преобразования, которые могут потребоваться итеративно или рекурсивно для многоосевого робота. Математика взаимосвязи между суставными углами и фактическими пространственными координатами называется кинематикой. См. Управление роботом

Позиционирование по декартовым координатам может быть выполнено путем ввода координат в систему или с помощью обучающего пульта, который перемещает робота в направлениях XYZ. Человеку-оператору намного легче визуализировать движения вверх / вниз, влево / вправо и т. Д., Чем перемещать каждый сустав по одному. Когда желаемое положение достигается, оно определяется каким-либо образом в зависимости от используемого программного обеспечения робота, например, P1 - P5 ниже.

Типичное программирование [ править ]

Большинство шарнирно-сочлененных роботов работают, сохраняя серию позиций в памяти и перемещаясь к ним в разное время в их программной последовательности. Например, робот, который перемещает предметы из одного места (корзина A) в другое (корзина B), может иметь простую программу «подобрать и разместить», подобную следующей:

Определите точки P1 – P5:

  1. Надежно над заготовкой (определяется как P1)
  2. 10 см над контейнером A (определяется как P2)
  3. В позиции для участия из бункера A (определяется как P3)
  4. 10 см над контейнером B (определяется как P4)
  5. В позиции для принятия участия из бункера B. (определяется как P5)

Определите программу:

  1. Перейти к P1
  2. Перейти к P2
  3. Перейти к P3
  4. Закрытый захват
  5. Перейти к P2
  6. Перейти на P4
  7. Перейти к P5
  8. Открытый захват
  9. Перейти на P4
  10. Перейти к P1 и закончить

Примеры того, как это будет выглядеть на популярных языках роботов, см. В разделе « Программирование промышленных роботов» .

Особенности [ править ]

Американский национальный стандарт для промышленных роботов и робототехнических систем - Требования безопасности (ANSI / RIA R15.06-1999) определяет сингулярность как «состояние, вызванное коллинеарным выравниванием двух или более осей робота, приводящее к непредсказуемым движениям и скоростям робота». Это наиболее часто встречается в роботизированных манипуляторах, в которых используется «запястье с тройным вращением». Это запястье, вокруг которого три оси запястья, управляющие рысканием, тангажем и креном, проходят через общую точку. Пример сингулярности запястья - это когда путь, по которому движется робот, заставляет первую и третью оси запястья робота (то есть оси 4 и 6 робота) совпадать. Затем вторая ось запястья пытается повернуться на 180 ° за нулевое время, чтобы сохранить ориентацию рабочего органа. Другой общий термин для этой особенности - «переворот запястья».Результат сингулярности может быть весьма драматичным и отрицательно сказаться на манипуляторе робота, конечном эффекторе и процессе. Некоторые производители промышленных роботов попытались обойти ситуацию, слегка изменив траекторию робота, чтобы предотвратить это состояние. Другой метод - снизить скорость движения робота, тем самым уменьшив скорость, необходимую запястью для выполнения перехода. ANSI / RIA предписывает производителям роботов информировать пользователя об особенностях, если они возникают во время ручного управления системой.тем самым снижая скорость, необходимую запястью для перехода. ANSI / RIA предписывает производителям роботов информировать пользователя об особенностях, если они возникают во время ручного управления системой.тем самым снижая скорость, необходимую запястью для перехода. ANSI / RIA предписывает производителям роботов информировать пользователя об особенностях, если они возникают во время ручного управления системой.

Сингулярность второго типа у вертикально шарнирных шестиосевых роботов с разделенными запястьями возникает, когда центр запястья находится на цилиндре, который центрирован вокруг оси 1 и имеет радиус, равный расстоянию между осями 1 и 4. Это называется сингулярностью плеча. Некоторые производители роботов также упоминают об особенностях центровки, когда оси 1 и 6 совпадают. Это просто частичный случай особенностей плеча. Когда робот проходит близко к особенности плеча, сустав 1 вращается очень быстро.

Третий и последний тип сингулярности у вертикально шарнирных шестиосных роботов с разделенными запястьями возникает, когда центр запястья находится в той же плоскости, что и оси 2 и 3.

Особенности тесно связаны с феноменом блокировки карданного подвеса , который имеет аналогичную первопричину выстраивания осей в линию.

Структура рынка [ править ]

Согласно исследованию World Robotics 2019 , проведенному Международной федерацией робототехники (IFR) , к концу 2017 года насчитывалось около 2 439 543 действующих промышленных робота. По оценкам, к концу 2021 года это число достигнет 3 788 000. [17] На 2018 год IFR оценивает мировые продажи промышленных роботов в 16,5 млрд долларов США. Включая стоимость программного обеспечения, периферийных устройств и системного проектирования, годовой оборот робототехнических систем в 2018 году оценивается в 48,0 млрд долларов США [17].

Китай является крупнейшим рынком промышленных роботов: в 2018 году было продано 154 032 единицы. [17] В Китае имелся самый большой операционный запас промышленных роботов - 649 447 единиц на конец 2018 года. [18] Производители промышленных роботов из США отгрузили 35 880 роботов в США. заводов в США в 2018 г., что на 7% больше, чем в 2017 г. [19]

Крупнейшим потребителем промышленных роботов является автомобильная промышленность с долей рынка 30%, затем электротехническая / электронная промышленность с 25%, металлургия и машиностроение с 10%, резиновая и пластмассовая промышленность с 5%, пищевая промышленность с 5%. [17] В текстильной, швейной и кожевенной промышленности действуют 1 580 единиц. [20]

Расчетные годовые поставки промышленных роботов во всем мире (в единицах): [17]

Здоровье и безопасность [ править ]

Международная федерация робототехники спрогнозировала увеличение во всем мире принятия промышленных роботов , и они оцениваются в 1,7 млн новых установок робота на заводах по всему миру к 2020 году [IFR 2017] . Быстрое развитие технологий автоматизации (например, стационарных роботов, совместных и мобильных роботов и экзоскелетов) может улучшить условия труда, но также и создать опасные факторы на производственных предприятиях. [21] [1] Несмотря на отсутствие данных по профессиональному надзору за травмами, конкретно связанными с роботами, исследователи из Национального института безопасности и гигиены труда США (NIOSH) выявили 61 смерть, связанную с роботами, в период с 1992 по 2015 год с помощью поиска по ключевым словам вБаза данных исследования переписи смертельных травм на производстве Бюро статистики труда (BLS) (см. Информацию из Центра исследований профессиональной робототехники ). Используя данные Бюро статистики труда, NIOSH и его государственные партнеры исследовали 4 смертельных случая, связанных с роботами, в рамках Программы оценки смертности и контроля . Кроме того, Управление по охране труда (OSHA) расследовало десятки смертей и травм, связанных с роботами, которые можно просмотреть на странице поиска несчастных случаев OSHA . Травмы и смертельные исходы со временем могут увеличиваться из-за увеличения числа работающих совместно и сосуществующих роботов, экзоскелетов с электроприводом и автономных транспортных средств.

Стандарты безопасности разрабатываются Ассоциацией робототехники (RIA) совместно с Американским национальным институтом стандартов (ANSI). [2] 5 октября 2017 года OSHA, NIOSH и RIA подписали альянс для совместной работы над расширением технических знаний, выявлением и устранением потенциальных опасностей на рабочем месте, связанных с традиционными промышленными роботами и новыми технологиями установок и систем для совместной работы человека и робота, и помочь определить необходимые исследования для снижения опасностей на рабочем месте. 16 октября NIOSH запустил Центр исследований профессиональной робототехники.«обеспечить научное руководство для разработки и использования профессиональных роботов, которые повышают безопасность, здоровье и благополучие рабочих». На данный момент исследовательские потребности, выявленные NIOSH и его партнерами, включают: отслеживание и предотвращение травм и смертельных случаев, стратегии вмешательства и распространения для содействия безопасным процедурам управления машинами и технического обслуживания, а также внедрение эффективных научно-обоснованных вмешательств в практику на рабочем месте.

См. Также [ править ]

  • Автоматизация
  • Домашний робот
  • Интеллектуальный производственный помощник (iiwa)
  • Погаснет (производство)
  • Мобильные промышленные роботы
  • Робот с декартовой системой координат
  • Портальный робот
  • Безопасность роботов на рабочем месте

Ссылки [ править ]

  1. ^ https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en Архивировано 17 июня 2016 г. на Wayback Machine
  2. ^ Разборка с помощью роботов для утилизации аккумуляторов электромобилей
  3. ^ "Беспокойство о преждевременной индустриализации" . Экономист . Архивировано 21 октября 2017 года . Проверено 21 октября 2017 .
  4. ^ a b c d e f g h "Техническое руководство OSHA (OTM) | Раздел IV: Глава 4 - Промышленные роботы и безопасность робототехнических систем | Администрация по охране труда и здоровья" . www.osha.gov . Проверено 15 ноября 2020 .
  5. ^ a b c d e f g h Guarana-DIY (30.06.2020). «Шесть основных типов промышленных роботов в 2020 году» . Сделай сам-робототехника . Проверено 15 ноября 2020 .
  6. ^ «Роботы и робототехнические устройства - Словарь» . www.iso.org . 2012 . Проверено 15 ноября 2020 .
  7. ^ "Промышленная робототехника: практическое руководство" . www.usinenouvelle.com (на французском) . Проверено 15 ноября 2020 .
  8. ^ «Комментарий, сохраненный для робота SCARA - это лучший выбор для вашего приложения» . www.fanuc.eu (на французском) . Проверено 15 ноября 2020 .
  9. ^ Нигату, Хассен; Ихун, Йимэскер (2020). Ларошель, Пьер; Маккарти, Дж. Майкл (ред.). «Алгебраическое понимание одновременного движения ПКМ 3RPS и 3PRS» . Материалы симпозиума 2020 USCToMM по механическим системам и робототехнике . Механизмы и машиноведение. Cham: Springer International Publishing: 242–252. DOI : 10.1007 / 978-3-030-43929-3_22 . ISBN 978-3-030-43929-3.
  10. Перейти ↑ Turek, Fred D. (июнь 2011 г.). «Основы машинного зрения, как заставить роботов видеть» . Краткие технические описания НАСА . 35 (6): 60–62. Архивировано из оригинала на 2012-01-27 . Проверено 29 ноября 2011 .
  11. ^ «Автоматический кран для установки блоков». Журнал Meccano . Ливерпуль Великобритания: Meccano. 23 (3): 172. Март 1938 г.
  12. ^ Тейлор, Гриффит П. (1995). Робин Джонсон (ред.). Робот Гаргантюа . Гаргантюа: Ежеквартально конструктор.
  13. ^ "Международная федерация робототехники" . IFR Международная федерация робототехники . Проверено 16 декабря 2018 .
  14. ^ KUKA-Roboter.de: 1973 Первый робот KUKA, заархивированный 20 февраля 2009 г.на Wayback Machine English, 28 марта 2010 г.
  15. ^ «История промышленных роботов» (PDF) . Архивировано из оригинального (PDF) 24 декабря 2012 года . Проверено 27 октября 2012 .
  16. ^ "EVS-EN ISO 9283: 2001" . Архивировано из оригинального 10 -го марта 2016 года . Проверено 17 апреля 2015 года .
  17. ^ a b c d e "Краткое изложение World Robotics 2019 Industrial Robots" (PDF) . ifr.org . Архивировано 6 апреля 2018 года (PDF) из оригинала . Проверено 10 октября 2019 .
  18. ^ «Оперативный запас промышленных роботов на конец года в отдельных странах» (PDF) . Архивировано из оригинального (PDF) на 2019-10-11 . Проверено 26 октября 2019 .
  19. ^ Левин, Стив; Уодделл, Каве (01.03.2019). «Большой американский толчок роботов» . Axios (сайт) . Проверено 1 марта 2019 .
  20. Саймон Кокс (5 октября 2017 г.). «Беспокойство о преждевременной индустриализации» . Экономист . Архивировано 21 октября 2017 года.
  21. ^ Технология, Комитет по информации; Автоматизация; Рабочая сила и США; Совет по информатике и телекоммуникациям; Наук, инженерный и физический отдел; Наук, Национальные академии; Инженерное дело; Медицина, а (2017-03-16). Информационные технологии и рабочая сила США: где мы находимся и куда мы идем дальше? . DOI : 10.17226 / 24649 . ISBN 9780309454025.

Дальнейшее чтение [ править ]

  • Ноф, Шимон Ю. (редактор) (1999). Справочник по промышленной робототехнике , 2-е изд. Джон Вили и сыновья. 1378 с.  ISBN 0-471-17783-0 . 
  • Ларс Вестерлунд (автор) (2000). Вытянутая рука человека. ISBN 91-7736-467-8 . 
  • Михал Гургуль (автор) (2018). Промышленные роботы и коботы: все, что вам нужно знать о своем будущем коллеге. ISBN 978-83-952513-0-6 . 

Внешние ссылки [ править ]

  • Промышленные роботы и безопасность робототехнических систем ( OSHA , в открытом доступе ).
  • Международная федерация робототехники IFR (по всему миру)
  • Ассоциация робототехники RIA (Северная Америка)
  • BARA, Британская ассоциация автоматизации и робототехники (Великобритания)
  • Центр профессиональной Robotics исследований по NIOSH
  • Стандарты безопасности, применяемые к робототехнике
  • Стратегии обращения к новым технологиям от INRS
  • Защита машин - почему это требование закона