Дозовая компенсация


Дозовая компенсация генов — эпигенетические механизмы, позволяющие уравнять уровень экспрессии сцепленных с полом генов у самцов и самок тех видов, в которых определение пола происходит с помощью половых хромосом. Так, например, у самцов млекопитающих гены X-хромосомы, не считая псевдоаутосомных областей, присутствуют в одной копии, а у самок — в двух. Поскольку такая разница могла бы привести к серьёзным аномалиям, существуют механизмы дозовой компенсации генов, не связанных непосредственно с определением пола. У млекопитающих это осуществляется с помощью инактивации одной X-хромосомы в клетках самок таким образом, что в каждой соматической клетке особи любого пола на диплоидный набор хромосом приходится только одна активная X-хромосома.

В 1949 году Мюррей Барр и Эварт Бертрам, исследуя кариотип клеток кошек, заметили, что в ядрах самок имеется плотное тельце, отличное от ядрышка, однако его нет в клетках кошек мужского пола. Они называли эту структуру половым хроматином. Позже она стала более известна как тельце Барра. В 1959 году Сусуму Оно выяснил, что тельце Барра — это сверхконденсированная X-хромосома[1]. В 1961 году Мэри Лайон предложила гипотезу, согласно которой инактивация X-хромосомы обеспечивает дозовую компенсацию генов, а выбор хромосомы, которая будет «выключена», происходит случайно. Такие выводы Лайон сделала на основе исследования клеток с аномальным количеством хромосом, в частности с трисомиями по половым хромосомам и полиплоидией. Были получены следующие результаты:

Из полученных результатов был сделан вывод, что клетки имеют какой-то механизм «счёта» X-хромосом и оставляют одну активную X-хромосому на пару аутосом. В пользу гипотезы о случайности выбора хромосомы, подлежащей преобразованию в гетерохроматин, свидетельствовали наблюдения мозаичной окраски у самок мышей, гетерозиготных по X-сцепленным генам, отвечающим за окраску меха. Мозаичность возникает из-за того, что инактивация одной из X-хромосом происходит в клетках зародыша в период гаструляции и митотически наследуется таким образом, что клон каждой из этих клеток сохраняет активной одну и ту же X хромосому: материнского или отцовского происхождения. Похожие результаты, свидетельствующие о мозаичности, были получены при исследовании изоформ глюкозо-6-фосфатизомеразы, которая кодируется геном X-хромосомы у людей.

Полученные результаты быстро нашли применение как в биологических исследованиях, так и за их пределами. Так, в 1965 году Стэнли Гартлер использовал инактивацию X-хромосомы, чтобы доказать клональное происхождение раковых опухолей. А в 1966 году на Олимпийских играх детекция телец Барра стала использоваться для подтверждения пола спортсменов.

Наибольшее количество информации о молекулярных механизмах дозовой компенсации у млекопитающих было накоплено благодаря работам, проведённым на эмбриональных стволовых клетках.