Критерий Сильвестра


Критерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой.

Тогда эта форма положительно определена тогда и только тогда, когда все её угловые миноры размеров i × i, где i пробегает все целые числа от 1 до n включительно, положительны; а отрицательно определена тогда и только тогда, когда знаки чередуются, причём [1]. Здесь угловыми минорами матрицы называются определители вида

для положительной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры её матрицы были положительны.

Пусть  — положительно определённая квадратичная форма. Тогда j-й диагональный элемент положителен, так как , где  — вектор со всеми нулевыми координатами, кроме j-й. При приведении матрицы к каноническому виду в силу невырожденности угловых миноров стро́ки не нужно будет переставлять, поэтому в итоге знаки главных миноров матрицы не изменятся. А в каноническом виде диагональные элементы положительны, а значит и миноры положительны; следовательно, (так как их знак не менялся при преобразованиях) у положительно определённой квадратичной формы в любом базисе главные миноры матрицы положительны.

Дана симметричная квадратичная форма, все угловые миноры которой положительны. Рассмотрим сначала первый диагональный элемент в каноническом виде: его знак определяется первым угловым минором. Далее, знак числа определяет знак (i + 1)-го элемента в диагональном виде. Получается, что в каноническом виде все элементы на диагонали положительные, то есть квадратичная форма определена положительно.[2]

Для отрицательной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры чётного порядка её матрицы были положительны, а нечётного порядка — отрицательны.