Сверхспирализация ДНК


Сверхспирализация ДНК  — явление пере- или недоскручивания топологически замкнутых цепей ДНК, в результате которого ось двойной спирали ДНК сама закручивается в спираль более высокого порядка. Под «топологически замкнутыми» понимают молекулы, свободное вращение концов которых затруднено (кольцевые молекулы ДНК либо линейные молекулы, концы которых зафиксированы белковыми структурами)[1]. Образующаяся в результате сверхспирализации ДНК иногда называется суперскрученной.

Сверхспирализация важна во множестве биологических процессов, таких как, например, компактизация ДНК. Определённые ферменты, в частности топоизомеразы, обладают способностью изменять топологию ДНК, например для репликации ДНК или транскрипции[2]. Сверхспирализация описывается математическими выражениями, которые сравнивают суперскрученную спираль ДНК с её «расслабленной» формой.

Сверхспирализация ДНК может быть положительной и отрицательной. За положительную сверхспирализацию принято принимать такую, при которой ось двойной спирали закручена в том же направлении, что и цепи внутри двойной спирали (по часовой стрелке). Соответственно, сверхспирализация считается отрицательной, если ось двойной спирали закручена против часовой стрелки[3]. ДНК большинства мезофильных организмов отрицательно сверхспирализована. В то же время есть сведения об особой биологической роли положительной сверхспирализации ДНК как мезофильных, так и термофильных организмов[4].

В топологически замкнутых молекулах ДНК две цепи переплетены между собой таким образом, что их невозможно разделить, не повредив одну из них. Для количественного описания связи двух цепей используется особая величина — порядок зацепления (Lk). Порядок зацепления показывает, сколько раз одна из цепей пересекает воображаемую плоскость, ограниченную второй цепью. Порядок зацепления всегда выражается целым числом, он может быть положительным и отрицательным. Принято считать, что порядок зацепления для замкнутых правозакрученных спиралей положителен. Порядок зацепления зависит только от топологического состояния цепей ДНК и потому остаётся постоянным при любых конформационных изменениях в молекуле. Одна и та же молекула ДНК может существовать в состояниях с разным порядком зацепления. Такие формы ДНК называют топологическими изомерами (топоизомерами)[5][3].

Снять напряжение с замкнутой молекулы ДНК можно, внеся в неё одноцепочечный разрыв и затем лигировав этот разрыв. Полученные в результате такой процедуры молекулы будут характеризоваться определённым диапазоном величины порядка зацепления. Среднее значение этого диапазона называют Lko. Lko можно приблизительно рассчитать по формуле:

где N — количество пар оснований в молекуле, а γ — среднее число пар оснований на виток двойной спирали при данных условиях. Обычно значение γ близко к 10,5[1].