Характеристическая функция (термодинамика)


Характеристическая функция — функция состояния термодинамической системы, рассматриваемая как математическая функция определённого набора термодинамических параметров — естественных независимых переменных — и характеризующаяся тем, что посредством этой функции (если она не равна тождественно нулю), её частных производных по естественным переменным и самих естественных переменных могут быть выражены в явном виде все термодинамические свойства системы[1]. После замены хотя бы одной из естественных переменных на другую независимую переменную функция перестаёт быть характеристической[2]. При фиксированных естественных переменных характер изменения характеристической функции (убывание или возрастание) указывает на направление протекания самопроизвольного процесса[3]. Характеристическая функция аддитивна: характеристическая функция всей системы равна сумме характеристических функций её частей[4]. Функция состояния, представляющая собой характеристическую функцию для одних термодинамических систем, может не являться характеристической для других систем. Так, потенциал Гиббса и функция Планка для фотонного газа не являются характеристическими функциями, поскольку тождественно равны нулю[5].

Последнее из приведённых соотношений практического значения не имеет: такую обобщённую координату, как объём, не используют как характеристическую функцию от энергии и энтропии, а вот выбор между первыми двумя функциями производится в соответствии с физическим смыслом обсуждаемой проблемы или исходя из соображений удобства[10][11].

Франсуа Массье[фр.] первым (1869) стал использовать внутреннюю энергию и энтропию в качестве независимых переменных, ввёл в термодинамику представление о характеристических функциях (как и сам термин) и предложил к использованию две такие функции. Он же впервые сформулировал соотношения, которые в современной литературе называют уравнениями Гиббса — Гельмгольца. Заслуга введения термодинамических потенциалов принадлежит Дж. У. Гиббсу (1875–1876); термин «термодинамический потенциал» предложил Пьер Дюгем.

где — объём системы, или в дифференциальной форме:

где  — абсолютная температура, давление. Из этого соотношения получаем выражения для температуры и давления:

практическое использование которых предполагает знание канонического уравнения состояния Выражение для давления есть не что иное, как термическое уравнение состояния рассматриваемой системы[2].