Эффект поля


Эффе́кт по́ля (англ. Field-effect) в широком смысле состоит в управлении электрофизическими параметрами поверхности твёрдого тела с помощью электрического поля, приложенного по нормали к поверхности[1].

В качестве способов регистрации изменений электрофизических параметров под действием электрического поля могут быть использованы измерение проводимости, дифференциальной ёмкости — метод вольт-фарадных характеристик, поверхностной фото-ЭДС. Чаще всего под эффектом поля понимают изменение проводимости твёрдого тела под действием на него поперечного электрического поля.

В полупроводниковой технике под эффектом поля понимается влияние внешнего электрического поля на электропроводность полупроводника. В общем случае рассматривается полубесконечный полупроводник, имеющий как минимум одну поверхность, свойства которой и рассматриваются. Основным «дефектом» такого полупроводника является наличие поверхности (обрыв периодичности кристаллической решётки), что по умолчанию детерминирует наличие поверхностных состояний. Кроме того, на поверхности присутствуют различные дефекты и примеси, также вносят свой вклад в плотность поверхностных состояний. Основной теоретической проблемой эффекта поля является нахождение распределения поверхностного и внутреннего потенциала в полупроводнике, особенно при приложении внешнего электрического поля. Основной экспериментальной проблемой эффекта поля фиксация поверхностных состояний при изменении внешних факторов, долгое время не давало возможности для полноценного исследования поверхностной проводимости и практической реализации МДП-транзисторов. Эта проблема была решена с разработкой технологии пассивации поверхности кремния в начале 60-х годов XX века.

И само появление названия эффект поля, и развитие теории на первом этапе стали возможными благодаря работе Уильяму Шокли. Данная проблема относится к проблеме междисциплинарного класса, лежащей на пересечении фундаментальной физики и инженерных наук. Она зародилась в конце 20-х годов XX века, как прикладная реакция на стремительное развитие фундаментальной науки — квантовой механики. Тогда же вполне стихийным образом фундаментальная наука начала своё стремительное внедрение в практику, что вылилось во второй половине XX века в т. н. лозунг «наука — производственная сила технического прогресса». На протяжении почти 80-ти лет своего существования данное направление развития науки переживало свои взлёты и падения, пока на одном из этапов фундаментальные исследования не указали путь развития.