Капиллярный электрофорез


Капиллярный электрофорез, известный также как капиллярный зональный электрофорез (англ. CZE), используется для разделения ионов по заряду. В случае обычного электрофореза заряженные молекулы перемещаются в проводящей жидкости под действием электрического поля. В 1960-х годах была предложена методика капиллярного электрофореза для разделения молекул по заряду и размеру в тонком капилляре, заполненном электролитом.

Для проведения капиллярного электрофореза требуется относительно простое оборудование. Схема эксперимента представлена на рисунке 1. Основные компоненты системы — флакон для нанесения образца, стартовый флакон, конечный флакон, капилляр, электроды, мощный источник питания, детектор и устройство обработки данных. Флакон для нанесения образца, стартовый и конечный флаконы заполнены электролитом, например, водным буферным раствором. Для нанесения образца конец капилляра опускают во флакон с образцом и затем перемещают в стартовый флакон. Перемещение анализируемых веществ осуществляется под действием электрического поля. Все ионы передвигаются по капилляру в одном направлении под действием электроосмотического тока. Анализируемые вещества разделяются по электрофоретической мобильности и детектируются около конца капилляра.[1]

Детектирование разделившихся молекул при капиллярном электрофорезе может осуществляться различными устройствами. Наиболее распространенные приборы детектируют изменение поглощения излучения в ультрафиолетовой области или в области видимого света. Обычно в таких системах в качестве ячейки используют участок капилляра. Длина пути проходящего света при капиллярном электрофорезе составляет порядка 50 микрометров, что намного меньше, чем в случае обычных ультрафиолетовых ячеек, в которых длина пути света порядка 1 сантиметра.

В соответствии с законом Бугера -Ламберта-Бера, чувствительность детектора пропорциональна длине пути, по которому свет проходит через ячейку. Для увеличения чувствительности удлиняют путь, по которому проходит свет, однако при увеличении размеров ячейки снижается разрешение. Капиллярная трубка может быть расширена в месте детектирования, такую разновидность называют пузырьковой ячейкой. В другом варианте увеличение пути проходящего света достигается за счёт добавления дополнительного капилляра (см. рисунок 2). Оба этих метода снижают эффективность разделения.[2]

Детектирование путём флуоресценции может быть использовано при капиллярном электрофорезе образцов, имеющих естественную флуоресценцию, или химические модификации, которые вводят флуоресцентные метки. Такой способ детектирования обеспечивает высокую чувствительность, однако не может быть использован для определения нефлуоресцирующих образцов. Также используют детектирование флуоресценции, вызванную лазером, такие системы капиллярного электрофореза могут детектировать в пределах 10−18 — 10−21 моль.