Из Википедии, бесплатной энциклопедии
  (Перенаправлено с 40 Gigabit Ethernet )
Перейти к навигации Перейти к поиску

40 Gigabit Ethernet ( 40GbE ) и 100 Gigabit Ethernet ( 100GbE ) - это группы компьютерных сетевых технологий для передачи кадров Ethernet со скоростью 40 и 100 гигабит в секунду (Гбит / с) соответственно. Эти технологии предлагают значительно более высокие скорости, чем 10 Gigabit Ethernet . Технология впервые была определена IEEE 802.3ba-2010 стандарта [1] , а позднее по 802.3bg-2011, 802.3bj-2014, [2] 802.3bm-2015, [3] и 802.3cd-2018 стандартов.

Стандарты определяют множество типов портов с различными оптическими и электрическими интерфейсами и разным количеством волоконно-оптических кабелей на порт. Поддерживаются короткие расстояния (например, 7 м) по твинаксиальному кабелю , в то время как стандарты для оптоволокна достигают 80 км.

Разработка стандартов [ править ]

18 июля 2006 г. на пленарном заседании IEEE 802.3 в Сан-Диего был проведен призыв интереса к группе высокоскоростных исследований (HSSG) по изучению новых стандартов для высокоскоростного Ethernet. [4]

Первое собрание группы по изучению 802.3 HSSG было проведено в сентябре 2006 г. [5] В июне 2007 г. после выставки NXTcomm в Чикаго была сформирована торговая группа под названием «Дорога к 100G». [6]

5 декабря 2007 г. был утвержден запрос на авторизацию проекта (PAR) для Целевой группы P802.3ba 40 Гбит / с и 100 Гбит / с Ethernet со следующим объемом проекта: [7]

Целью этого проекта является расширение протокола 802.3 до рабочих скоростей 40 Гбит / с и 100 Гбит / с, чтобы обеспечить значительное увеличение пропускной способности при сохранении максимальной совместимости с установленной базой интерфейсов 802.3, предыдущими инвестициями в исследования и развитие, а также принципы работы и управления сетью. Проект должен обеспечить соединение оборудования, удовлетворяющего требованиям расстояния для предполагаемых приложений.

Целевая группа 802.3ba встретилась впервые в январе 2008 года. [8] Этот стандарт был утвержден на заседании Совета по стандартам IEEE в июне 2010 года под названием IEEE Std 802.3ba-2010. [9]

Первое собрание исследовательской группы PMD для одномодового волокна Ethernet 40 Гбит / с было проведено в январе 2010 г., а 25 марта 2010 г. рабочая группа P802.3bg для PMD одномодового волокна P802.3bg была одобрена для PMD последовательного SMF 40 Гбит / с.

Объем этого проекта заключается в добавлении опции одномодового волокна, зависящей от физической среды (PMD) для последовательной работы со скоростью 40 Гбит / с, путем определения дополнений и соответствующих модификаций IEEE Std 802.3-2008 с поправками IEEE P802.3ba. проект (и любые другие одобренные поправки или исправления).

17 июня 2010 г. был утвержден стандарт IEEE 802.3ba [1] [10] В марте 2011 г. был утвержден стандарт IEEE 802.3bg. [11] 10 сентября 2011 г. была утверждена рабочая группа по объединительной плате P802.3bj 100 Гбит / с и медному кабелю. [2]

Объем этого проекта состоит в том, чтобы указать дополнения и соответствующие модификации IEEE Std 802.3 для добавления спецификаций 4-полосного физического уровня (PHY) 100 Гбит / с и параметров управления для работы на объединительных платах и твинаксиальных медных кабелях, а также указать дополнительный энергоэффективный Ethernet (EEE) для работы 40 Гбит / с и 100 Гбит / с через объединительные платы и медные кабели.

10 мая 2013 г. была утверждена целевая группа по оптоволоконному соединению P802.3bm 40 Гбит / с и 100 Гбит / с. [3]

Этот проект предназначен для определения дополнений и соответствующих модификаций стандарта IEEE Std 802.3 для добавления спецификаций физического уровня (PHY) 100 Гбит / с и параметров управления с использованием четырехканального электрического интерфейса для работы с многомодовыми и одномодовыми оптоволоконными кабелями, а также указать дополнительный энергоэффективный Ethernet (EEE) для работы со скоростью 40 и 100 Гбит / с по оптоволоконным кабелям. Кроме того, добавлены спецификации физического уровня (PHY) 40 Гбит / с и параметры управления для работы на одномодовых оптоволоконных кабелях с увеличенным радиусом действия (> 10 км).

Также 10 мая 2013 года была утверждена рабочая группа P802.3bq 40GBASE-T. [12]

Укажите физический уровень (PHY) для работы со скоростью 40 Гбит / с на симметричных медных кабелях с витой парой с использованием существующего управления доступом к среде передачи и с расширениями соответствующих параметров управления физическим уровнем.

12 июня 2014 года был утвержден стандарт IEEE 802.3bj. [2]

16 февраля 2015 года был утвержден стандарт IEEE 802.3bm. [13]

12 мая 2016 года рабочая группа IEEE P802.3cd приступила к работе по определению двухполосного физического уровня со скоростью 100 Гбит / с следующего поколения. [14]

14 мая 2018 г. был утвержден PAR для рабочей группы IEEE P802.3ck. Объем этого проекта состоит в том, чтобы определить дополнения и соответствующие модификации IEEE Std 802.3 для добавления спецификаций физического уровня и параметров управления для электрических интерфейсов 100 Гбит / с, 200 Гбит / с и 400 Гбит / с на основе сигнализации 100 Гбит / с. . [15]

5 декабря 2018 г. Совет IEEE-SA утвердил стандарт IEEE 802.3cd.

12 ноября 2018 г. рабочая группа IEEE P802.3ct приступила к работе по определению физического уровня, поддерживающего работу 100 Гбит / с на одной длине волны, способной преодолевать расстояние не менее 80 км по системе DWDM (с использованием комбинации фазовой и амплитудной модуляции с когерентным обнаружением). ). [16]

В мае 2019 года целевая группа IEEE P802.3cu начала работу по определению физических уровней PHY с одной длиной волны 100 Гбит / с для работы по SMF (одномодовое волокно) с длинами не менее 2 км (100GBASE-FR1) и 10 км ( 100GBASE-LR1). [17]

В июне 2020 года рабочая группа IEEE P802.3db начала работу над определением спецификации физического уровня, которая поддерживает работу со скоростью 100 Гбит / с для 1 пары MMF длиной не менее 50 м. [18]

11 февраля 2021 года совет IEEE-SA утвердил стандарт IEEE 802.3cu. [19]

Ранние продукты [ править ]

Передача оптического сигнала по нелинейной среде - это принципиальная проблема аналогового проектирования. Таким образом, она развивалась медленнее, чем литография цифровых схем (которая в целом развивалась в соответствии с законом Мура ). Это объясняет, почему транспортные системы со скоростью 10 Гбит / с существовали с середины 1990-х годов, в то время как первые набеги на передачу со 100 Гбит / с произошли примерно через 15 лет - 10-кратное увеличение скорости за 15 лет намного медленнее, чем обычно 2-кратное увеличение скорости за 1,5 года. цитируется по закону Мура.

Тем не менее, по крайней мере, пять фирм (Ciena, Alcatel-Lucent, MRV, ADVA Optical и Huawei) сделали   к августу 2011 года свои объявления для заказчиков транспортных систем со скоростью 100 Гбит / с [20] - с разной степенью возможностей. Хотя поставщики утверждали, что световые тракты со скоростью 100 Гбит / с могут использовать существующую аналоговую оптическую инфраструктуру, развертывание высокоскоростной технологии строго контролировалось, и перед их вводом в эксплуатацию требовались обширные испытания на совместимость.

Спроектировать маршрутизаторы или коммутаторы, поддерживающие интерфейсы со скоростью 100 Гбит / с, сложно. Одной из причин этого является необходимость обрабатывать поток пакетов 100 Гбит / с на линейной скорости без переупорядочения в микропотоках IP / MPLS.

По состоянию на 2011 год большинство компонентов в тракте обработки пакетов 100 Гбит / с (микросхемы PHY, NPU , память) не были доступны в готовом виде или требовали обширной квалификации и совместной разработки. Другая проблема связана с малопроизводительным производством оптических компонентов со скоростью 100 Гбит / с, которые также были нелегко доступны - особенно в сменных, длинноходных или перестраиваемых лазерных моделях.

Объединительная плата [ править ]

NetLogic Microsystems анонсировала модули объединительной платы в октябре 2010 года. [21]

Многомодовое волокно [ править ]

В 2009 году Mellanox [22] и Reflex Photonics [23] объявили о модулях, основанных на соглашении CFP.

Single mode fiber[edit]

Finisar,[24] Sumitomo Electric Industries,[25] and OpNext[26] all demonstrated singlemode 40 or 100 Gbit/s Ethernet modules based on the C Form-factor Pluggable agreement at the European Conference and Exhibition on Optical Communication in 2009.

Compatibility[edit]

Optical fiber IEEE 802.3ba implementations were not compatible with the numerous 40 and 100 Gbit/s line rate transport systems because they had different optical layer and modulation formats as the IEEE 802.3ba Port Types show. In particular, existing 40 Gbit/s transport solutions that used dense wavelength-division multiplexing to pack four 10 Gbit/s signals into one optical medium were not compatible with the IEEE 802.3ba standard, which used either coarse WDM in 1310 nm wavelength region with four 25 Gbit/s or four 10 Gbit/s channels, or parallel optics with four or ten optical fibers per direction.

Test and measurement[edit]

  • Quellan announced a test board in 2009.[27]
  • Ixia developed Physical Coding Sublayer Lanes[28] and demonstrated a working 100GbE link through a test setup at NXTcomm in June 2008.[29] Ixia announced test equipment in November 2008.[30][31]
  • Discovery Semiconductors introduced optoelectronics converters for 100 Gbit/s testing of the 10 km and 40 km Ethernet standards in February 2009.[32]
  • JDS Uniphase introduced test and measurement products for 40 and 100 Gbit/s Ethernet in August 2009.[33]
  • Spirent Communications introduced test and measurement products in September 2009.[34]
  • EXFO demonstrated interoperability in January 2010.[35]
  • Xena Networks demonstrated test equipment at the Technical University of Denmark in January 2011.[36][37]
  • Calnex Solutions introduced 100GbE Synchronous Ethernet synchronisation test equipment in November 2014.[38]
  • Spirent Communications introduced the Attero-100G for 100GbE and 40GbE impairment emulation in April 2015.[39][40]
  • VeEX[41] introduced its CFP-based UX400-100GE and 40GE test and measurement platform in 2012,[42] followed by CFP2, CFP4, QSFP28 and QSFP+ versions in 2015.[43][44]

Mellanox Technologies[edit]

Mellanox Technologies introduced the ConnectX-4 100GbE single and dual port adapter in November 2014.[45] In the same period, Mellanox introduced availability of 100GbE copper and fiber cables.[46] In June 2015, Mellanox introduced the Spectrum 10, 25, 40, 50 and 100GbE switch models.[47]

Aitia[edit]

Aitia International introduced the C-GEP FPGA-based switching platform in February 2013.[48] Aitia also produce 100G/40G Ethernet PCS/PMA+MAC IP cores for FPGA developers and academic researchers.[49]

Arista[edit]

Arista Networks introduced the 7500E switch (with up to 96 100GbE ports) in April 2013.[50] In July 2014, Arista introduced the 7280E switch (the world's first top-of-rack switch with 100G uplink ports).[51]

Extreme Networks[edit]

Extreme Networks introduced a four-port 100GbE module for the BlackDiamond X8 core switch in November 2012.[52]

Dell[edit]

Dell's Force10 switches support 40 Gbit/s interfaces. These 40 Gbit/s fiber-optical interfaces using QSFP+ transceivers can be found on the Z9000 distributed core switches, S4810 and S4820[53] as well as the blade-switches MXL and the IO-Aggregator. The Dell PowerConnect 8100 series switches also offer 40 Gbit/s QSFP+ interfaces.[54]

Chelsio[edit]

Chelsio Communications introduced 40 Gbit/s Ethernet network adapters (based on the fifth generation of its Terminator architecture) in June 2013.[55]

Telesoft Technologies Ltd[edit]

Telesoft Technologies announced the dual 100G PCIe accelerator card, part of the MPAC-IP series.[56] Telesoft also announced the STR 400G (Segmented Traffic Router)[57] and the 100G MCE (Media Converter and Extension).[58]

Commercial trials and deployments[edit]

Unlike the "race to 10 Gbit/s" that was driven by the imminent need to address growth pains of the Internet in the late 1990s, customer interest in 100 Gbit/s technologies was mostly driven by economic factors. The common reasons to adopt the higher speeds were:[59]

  • to reduce the number of optical wavelengths ("lambdas") used and the need to light new fiber
  • to utilize bandwidth more efficiently than 10 Gbit/s link aggregate groups
  • to provide cheaper wholesale, internet peering and data center connectivity
  • to skip the relatively expensive 40 Gbit/s technology and move directly from 10 to 100 Gbit/s

Alcatel-Lucent[edit]

In November 2007, Alcatel-Lucent held the first field trial of 100 Gbit/s optical transmission. Completed over a live, in-service 504 kilometre portion of the Verizon network, it connected the Florida cities of Tampa and Miami.[60]

100GbE interfaces for the 7450 ESS/7750 SR service routing platform were first announced in June 2009, with field trials with Verizon,[61] T-Systems and Portugal Telecom taking place in June–September 2010. In September 2009, Alcatel-Lucent combined the 100G capabilities of its IP routing and optical transport portfolio in an integrated solution called Converged Backbone Transformation.[62]

In June 2011, Alcatel-Lucent introduced a packet processing architecture known as FP3, advertised for 400 Gbit/s rates.[63] Alcatel-Lucent announced the XRS 7950 core router (based on the FP3) in May 2012.[64][65]

Brocade[edit]

Brocade Communications Systems introduced their first 100GbE products (based on the former Foundry Networks MLXe hardware) in September 2010.[66] In June 2011, the new product went live at the AMS-IX traffic exchange point in Amsterdam.[67]

Cisco[edit]

Cisco Systems and Comcast announced their 100GbE trials in June 2008.[68] However, it is doubtful that this transmission could approach 100 Gbit/s speeds when using a 40 Gbit/s per slot CRS-1 platform for packet processing. Cisco's first deployment of 100GbE at AT&T and Comcast took place in April 2011.[69] In the same year, Cisco tested the 100GbE interface between CRS-3 and a new generation of their ASR9K edge router model.[70] In 2017, Cisco announced a 32 port 100GbE Cisco Catalyst 9500 Series switch [71] and in 2019 the modular Catalyst 9600 Series switch with a 100GbE line card [72]

Huawei[edit]

In October 2008, Huawei presented their first 100GbE interface for their NE5000e router.[73] In September 2009, Huawei also demonstrated an end-to-end 100 Gbit/s link.[74] It was mentioned that Huawei's products had the self-developed NPU "Solar 2.0 PFE2A" onboard and was using pluggable optics in CFP form-factor.

In a mid-2010 product brief, the NE5000e linecards were given the commercial name LPUF-100 and credited with using two Solar-2.0 NPUs per 100GbE port in opposite (ingress/egress) configuration.[75] Nevertheless, in October 2010, the company referenced shipments of NE5000e to Russian cell operator "Megafon" as "40GBPS/slot" solution, with "scalability up to" 100 Gbit/s.[76]

In April 2011, Huawei announced that the NE5000e was updated to carry 2x100GbE interfaces per slot using LPU-200 linecards.[77] In a related solution brief, Huawei reported 120 thousand Solar 1.0 integrated circuits shipped to customers, but no Solar 2.0 numbers were given.[78] Following the August 2011 trial in Russia, Huawei reported paying 100 Gbit/s DWDM customers, but no 100GbE shipments on NE5000e.[79]

Juniper[edit]

Juniper Networks announced 100GbE for its T-series routers in June 2009.[80] The 1x100GbE option followed in Nov 2010, when a joint press release with academic backbone network Internet2 marked the first production 100GbE interfaces going live in real network.[81]

In the same year, Juniper demonstrated 100GbE operation between core (T-series) and edge (MX 3D) routers.[82] Juniper, in March 2011, announced first shipments of 100GbE interfaces to a major North American service provider (Verizon[83]).

In April 2011, Juniper deployed a 100GbE system on the UK education network JANET.[84] In July 2011, Juniper announced 100GbE with Australian ISP iiNet on their T1600 routing platform.[85] Juniper started shipping the MPC3E line card for the MX router, a 100GbE CFP MIC, and a 100GbE LR4 CFP optics in March 2012[citation needed]. In Spring 2013, Juniper Networks announced the availability of the MPC4E line card for the MX router that includes 2 100GbE CFP slots and 8 10GbE SFP+ interfaces[citation needed].

In June 2015, Juniper Networks announced the availability of its CFP-100GBASE-ZR module which is a plug & play solution that brings 80 km 100GbE to MX & PTX based networks.[86] The CFP-100GBASE-ZR module uses DP-QPSK modulation and coherent receiver technology with an optimized DSP and FEC implementation. The low-power module can be directly retrofitted into existing CFP sockets on MX and PTX routers.

Standards[edit]

The IEEE 802.3 working group is concerned with the maintenance and extension of the Ethernet data communications standard. Additions to the 802.3 standard[87] are performed by task forces which are designated by one or two letters. For example, the 802.3z task force drafted the original Gigabit Ethernet standard.

802.3ba is the designation given to the higher speed Ethernet task force which completed its work to modify the 802.3 standard to support speeds higher than 10 Gbit/s in 2010.

The speeds chosen by 802.3ba were 40 and 100 Gbit/s to support both end-point and link aggregation needs respectively. This was the first time two different Ethernet speeds were specified in a single standard. The decision to include both speeds came from pressure to support the 40 Gbit/s rate for local server applications and the 100 Gbit/s rate for internet backbones. The standard was announced in July 2007[88] and was ratified on June 17, 2010.[9]

A 40G-SR4 transceiver in the QSFP form factor

The 40/100 Gigabit Ethernet standards encompass a number of different Ethernet physical layer (PHY) specifications. A networking device may support different PHY types by means of pluggable modules. Optical modules are not standardized by any official standards body but are in multi-source agreements (MSAs). One agreement that supports 40 and 100 Gigabit Ethernet is the C Form-factor Pluggable (CFP) MSA[89] which was adopted for distances of 100+ meters. QSFP and CXP connector modules support shorter distances.[90]

The standard supports only full-duplex operation.[91] Other objectives include:

  • Preserve the 802.3 Ethernet frame format utilizing the 802.3 MAC
  • Preserve minimum and maximum frame size of current 802.3 standard
  • Support a bit error rate (BER) better than or equal to 10−12 at the MAC/PLS service interface
  • Provide appropriate support for OTN
  • Support MAC data rates of 40 and 100 Gbit/s
  • Provide physical layer specifications (PHY) for operation over single-mode optical fiber (SMF), laser optimized multi-mode optical fiber (MMF) OM3 and OM4, copper cable assembly, and backplane.

The following nomenclature is used for the physical layers:[2][3][92]

The 100 m laser optimized multi-mode fiber (OM3) objective was met by parallel ribbon cable with 850 nm wavelength 10GBASE-SR like optics (40GBASE-SR4 and 100GBASE-SR10). The backplane objective with 4 lanes of 10GBASE-KR type PHYs (40GBASE-KR4). The copper cable objective is met with 4 or 10 differential lanes using SFF-8642 and SFF-8436 connectors. The 10 and 40 km 100 Gbit/s objectives with four wavelengths (around 1310 nm) of 25 Gbit/s optics (100GBASE-LR4 and 100GBASE-ER4) and the 10 km 40 Gbit/s objective with four wavelengths (around 1310 nm) of 10 Gbit/s optics (40GBASE-LR4).[93]

In January 2010 another IEEE project authorization started a task force to define a 40 Gbit/s serial single-mode optical fiber standard (40GBASE-FR). This was approved as standard 802.3bg in March 2011.[11] It used 1550 nm optics, had a reach of 2 km and was capable of receiving 1550 nm and 1310 nm wavelengths of light. The capability to receive 1310 nm light allows it to inter-operate with a longer reach 1310 nm PHY should one ever be developed. 1550 nm was chosen as the wavelength for 802.3bg transmission to make it compatible with existing test equipment and infrastructure.[94]

In December 2010, a 10x10 multi-source agreement (10x10 MSA) began to define an optical Physical Medium Dependent (PMD) sublayer and establish compatible sources of low-cost, low-power, pluggable optical transceivers based on 10 optical lanes at 10 Gbit/s each.[95] The 10x10 MSA was intended as a lower cost alternative to 100GBASE-LR4 for applications which do not require a link length longer than 2 km. It was intended for use with standard single mode G.652.C/D type low water peak cable with ten wavelengths ranging from 1523 to 1595 nm. The founding members were Google, Brocade Communications, JDSU and Santur.[96]Other member companies of the 10x10 MSA included MRV, Enablence, Cyoptics, AFOP, oplink, Hitachi Cable America, AMS-IX, EXFO, Huawei, Kotura, Facebook and Effdon when the 2 km specification was announced in March 2011.[97]The 10X10 MSA modules were intended to be the same size as the C Form-factor Pluggable specifications.

On June 12, 2014, the 802.3bj standard was approved. The 802.3bj standard specifies 100 Gbit/s 4x25G PHYs - 100GBASE-KR4, 100GBASE-KP4 and 100GBASE-CR4 - for backplane and twin-ax cable.

On February 16, 2015, the 802.3bm standard was approved. The 802.3bm standard specifies a lower-cost optical 100GBASE-SR4 PHY for MMF and a four-lane chip-to-module and chip-to-chip electrical specification (CAUI-4). The detailed objectives for the 802.3bm project can be found on the 802.3 website.

On May 14, 2018, the 802.3ck project was approved. This has objectives to:[98]

  • Define a single-lane 100 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (100GAUI-1 C2M)
  • Define a single-lane 100 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (100GAUI-1 C2C)
  • Define a single-lane 100 Gbit/s PHY for operation over electrical backplanes supporting an insertion loss ≤ 28 dB at 26.56 GHz (100GBASE-KR1).
  • Define a single-lane 100 Gbit/s PHY for operation over twin-axial copper cables with lengths up to at least 2 m (100GBASE-CR1).

On November 12, 2018, the IEEE P802.3ct Task Force started working to define PHY supporting 100 Gbit/s operation on a single wavelength capable of at least 80 km over a DWDM system (100GBASE-ZR) (using a combination of phase and amplitude modulation with coherent detection).

On December 5, 2018, the 802.3cd standard was approved. The 802.3cd standard specifies PHYs using 50Gbps lanes - 100GBASE-KR2 for backplane, 100GBASE-CR2 for twin-ax cable, 100GBASE-SR2 for MMF and using 100Gbps signalling 100GBASE-DR for SMF.

In June 2020, the IEEE P802.3db Task Force started working to define a physical layer specification that supports 100 Gb/s operation over 1 pair of MMF with lengths up to at least 50 m. [18]

On February 11, 2021, the IEEE 802.3cu standard was approved. The IEEE 802.3cu standard defines single-wavelength 100 Gb/s PHYs for operation over SMF (Single-Mode Fiber) with lengths up to at least 2 km (100GBASE-FR1) and 10 km (100GBASE-LR1).

100G interface types[edit]

Coding schemes[edit]

10.3125 Gbaud with NRZ ("PAM2") and 64b66b on 10 lanes per direction
One of the earliest coding used, this widens the coding scheme used in single lane 10GE and quad lane 40G to use 10 lanes. Due to the low symbol rate, relatively long ranges can be achieved at the cost of using a lot of cabling.
This also allows breakout to 10×10GE, provided that the hardware supports splitting the port.
25.78125 Gbaud with NRZ ("PAM2") and 64b66b on 4 lanes per direction
A sped-up variant of the above, this directly corresponds to 10GE/40GE signalling at 2.5× speed. The higher symbol rate makes links more susceptible to errors.
If the device and transceiver support dual-speed operation, it is possible to reconfigure an 100G port to downspeed to 40G or 4×10G. There is no autonegotiation protocol for this, thus manual configuration is necessary. Similarly, a port can be broken into 4×25G if implemented in the hardware. This is applicable even for CWDM4, if a CWDM demultiplexer and CWDM 25G optics are used appropriately.
25.78125 Gbaud with NRZ ("PAM2") and RS-FEC(528,514) on 4 lanes per direction
To address the higher susceptibility to errors at these symbol rates, an application of Reed–Solomon error correction was defined in IEEE 802.3bj / Clause 91. This replaces the 64b66b encoding with a 256b257b encoding followed by the RS-FEC application, which combines to the exact same overhead as 64b66b. To the optical transceiver or cable, there is no distinction between this and 64b66b; some interface types (e.g. CWDM4) are defined "with or without FEC."
26.5625 Gbaud with PAM4 and RS-FEC(544,514) on 2 lanes per direction
This achieves a further doubling in bandwidth per lane (used to halve the number of lanes) by employing pulse-amplitude modulation with 4 distinct analog levels, making each symbol carry 2 bits. To keep up error margins, the FEC overhead is doubled from 2.7% to 5.8%, which explains the slight rise in symbol rate.
53.125 Gbaud with PAM4 and RS-FEC(544,514) on 1 lane per direction
Further pushing silicon limits, this is a double rate variant of the previous, giving full 100GE operation over 1 medium lane.
30.14475 Gbaud with DP-QPSK and SD-FEC on 1 lane per direction
Mirroring OTN4 developments, this employs polarization to carry one axis of the DP-QPSK constellation. Additionally, new soft decision FEC algorithms take additional information on analog signal levels as input to the error correction procedure.
13.59375 Gbaud with PAM4, KP4 specific coding and RS-FEC(544,514) on 4 lanes per direction
A half-speed variant of 26.5625 Gbaud with RS-FEC, with a 31320/31280 step encoding the lane number into the signal, and further 92/90 framing.

40G interface types[edit]

Additional note for 40GBASE-CR4/-KR4:

CL73 allows communication between the 2 PHYs to exchange technical capability pages, and both PHYs come to a common speed and media type. Completion of CL73 initiates CL72. CL72 allows each of the 4 lanes' transmitters to adjust pre-emphasis via feedback from the link partner.

40GBASE-T
40GBASE-T is a port type for 4-pair balanced twisted-pair Cat.8 copper cabling up to 30 m defined in IEEE 802.3bq.[116] IEEE 802.3bq-2016 standard was approved by The IEEE-SA Standards Board on June 30, 2016.[117] It uses 16-level PAM signaling over four lanes at 3,200 MBaud each, scaled up from 10GBASE-T.

Chip-to-chip/chip-to-module interfaces[edit]

CAUI-10
CAUI-10 is a 100 Gbit/s 10-lane electrical interface defined in 802.3ba.[1]
CAUI-4
CAUI-4 is a 100 Gbit/s 4-lane electrical interface defined in 802.3bm Annex 83E with a nominal signaling rate for each lane of 25.78125 GBd using NRZ modulation.[3]
100GAUI-4
100GAUI-4 is a 100 Gbit/s 4-lane electrical interface defined in 802.3cd Annex 135D/E with a nominal signaling rate for each lane of 26.5625 GBd using NRZ modulation and RS-FEC(544,514) so suitable for use with 100GBASE-CR2, 100GBASE-KR2, 100GBASE-SR2, 100GBASE-DR, 100GBASE-FR1, 100GBASE-LR1 PHYs.
100GAUI-2
100GAUI-2 is a 100 Gbit/s 2-lane electrical interface defined in 802.3cd Annex 135F/G with a nominal signaling rate for each lane of 26.5625 GBd using PAM4 modulation and RS-FEC(544,514) so suitable for use with 100GBASE-CR2, 100GBASE-KR2, 100GBASE-SR2, 100GBASE-DR, 100GBASE-FR1, 100GBASE-LR1 PHYs.

Pluggable optics standards[edit]

40G Transceiver Form Factors
The QSFP+ form factor is specified for use with the 40 Gigabit Ethernet. Copper direct attached cable (DAC) or optical modules are supported, see Figure 85–20 in the 802.3 spec. QSFP+ modules at 40Gbit/s can also be used to provide four independent ports of 10 gigabit Ethernet.[1]
100G Transceiver Form Factors
CFP modules use the 10-lane CAUI-10 electrical interface.
CFP2 modules use the 10-lane CAUI-10 electrical interface or the 4-lane CAUI-4 electrical interface.
CFP4 modules use the 4-lane CAUI-4 electrical interface.[118]
QSFP28 modules use the CAUI-4 electrical interface.
SFP-DD or Small Form-factor Pluggable – Double Density modules use the 100GAUI-2 electrical interface.
Cisco's CPAK optical module uses the four lane CEI-28G-VSR electrical interface.[119][120]
There are also CXP and HD module standards.[121] CXP modules use the CAUI-10 electrical interface.

Optical connectors[edit]

Short reach interfaces use Multiple-Fiber Push-On/Pull-off (MPO) optical connectors.[1]:86.10.3.3 40GBASE-SR4 and 100GBASE-SR4 use MPO-12 while 100GBASE-SR10 uses MPO-24 with one optical lane per fiber strand.

Long reach interfaces use duplex LC connectors with all optical lanes multiplexed with WDM.

See also[edit]

  • Ethernet Alliance
  • InfiniBand
  • Interconnect bottleneck
  • Optical communication
  • Optical fiber cable
  • Optical Transport Network
  • Parallel optical interface
  • Terabit Ethernet

References[edit]

  1. ^ a b c d e "IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force". official web site. IEEE. June 19, 2010. Retrieved June 24, 2011.
  2. ^ a b c d "100 Gb/s Backplane and Copper Cable Task Force". official web site. IEEE. Archived from the original on 2013-06-27. Retrieved 2013-06-22.
  3. ^ a b c d "40 Gb/s and 100 Gb/s Fiber Optic Task Force". official web site. IEEE.
  4. ^ "IEEE Forms Higher Speed Study Group to Explore the Next Generation of Ethernet Technology". 2006-07-25. Archived from the original on 2011-07-26. Retrieved 2013-01-14.
  5. ^ "IEEE 802.3 Higher Speed Study Group". IEEE802.org. Retrieved December 17, 2011.
  6. ^ Jeff Caruso (June 21, 2007). "Group pushes 100 Gigabit Ethernet: The 'Road to 100G' Alliance is born". Network World. Retrieved June 6, 2011.
  7. ^ "Project Authorization Request Approval notification: Approcal of P802.3ba" (PDF). IEEE Standards Association Standards Board. December 5, 2007. Retrieved June 6, 2011.
  8. ^ Caruso, Jeff (2008-01-15). "Standardization work on next Ethernet gets under way". NetworkWorld.
  9. ^ a b "IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force". 2010-06-21.
  10. ^ "IEEE 802.3ba standard released". Help Net Security web site. June 21, 2010. Retrieved June 24, 2011. The IEEE 802.3ba standard, ratified June 17, 2010, ...
  11. ^ a b "IEEE P802.3bg 40Gb/s Ethernet: Single-mode Fibre PMD Task Force". official task force web site. IEEE 802. April 12, 2011. Retrieved June 7, 2011.
  12. ^ "P802.3bq PAR" (PDF).
  13. ^ "[802.3_100GNGOPTX] FW: P802.3bm-2015 Approval Notification". ieee802.org. Retrieved 2015-02-19.
  14. ^ "IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force". May 12, 2016.
  15. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2018-05-17. Retrieved 2018-11-30.CS1 maint: archived copy as title (link)
  16. ^ "IEEE P802.3ct Project Objectives" (PDF). Nov 12, 2018.
  17. ^ "IEEE P802.3cu Project Objectives" (PDF). Nov 12, 2018.
  18. ^ a b http://www.ieee802.org/3/db/P802d3db_Objectives_Approved_May_2020.pdf
  19. ^ https://www.ieee802.org/3/cu/email/msg00318.html
  20. ^ "Huawei's 100G is out of the door".
  21. ^ "NetLogic Microsystems Announces Industry's First Dual-Mode Quad-Port 10GBASE-KR and 40GBASE-KR4 Backplane PHY with Energy Efficient Ethernet". News release. NetLogic Microsystems. October 13, 2010. Retrieved June 24, 2013.[permanent dead link]
  22. ^ "Mellanox Technologies". Archived from the original on September 28, 2009. Retrieved September 25, 2009.
  23. ^ "InterBOARD CFP 100GBASE-SR10 Parallel Optical Module". commercial web site. Reflex Photonics Inc. Archived from the original on 2009-09-28. Retrieved June 7, 2011.
  24. ^ "Finisar Corporation – Finisar First to Demonstrate 40 Gigabit Ethernet LR4 CFP Transceiver Over 10 km of Optical Fiber at ECOC". Archived from the original on September 28, 2009. Retrieved September 25, 2009.
  25. ^ "Sumitomo Electric develops 40GbE transceiver". Archived from the original on July 5, 2012. Retrieved September 25, 2009.
  26. ^ "Hitachi and Opnext unveil receiver for 100GbE and demo 10 km transmission over SMF". Retrieved October 26, 2009.
  27. ^ "Quellan QLx411GRx 40G Evaluation Board". Archived from the original on 2009-09-28. Retrieved September 25, 2009.
  28. ^ "Enabling 100 Gigabit Ethernet Implementing PCS Lanes" (PDF).
  29. ^ "Avago Technologies, Infinera & Ixia to demo the first 100 Gig Ethernet". Archived from the original on 2012-03-10. Retrieved 7 March 2012.
  30. ^ "Ixia First to Offer 100 GE Testing Capability". News release. Ixia. September 29, 2008. Retrieved June 7, 2011.
  31. ^ "40 Gb/s and 100 Gb/s Testing: Overview". commercial web site. Ixia. Retrieved June 7, 2011.
  32. ^ "Discovery Semiconductors – 100 Gb Ethernet (4 x 25 Gb/s) Quad PIN-TIA Optical Receiver". commercial web site. Retrieved June 7, 2011.
  33. ^ "JDSU Introduces Industry's Most Robust 100 Gigabit Ethernet Test Suite". News release. JDS Uniphase. August 19, 2009. Archived from the original on January 26, 2013. Retrieved June 7, 2011.
  34. ^ "40/100 GbE: Testing the next generation of high speed Ethernet". commercial web site. Spirent Communications. Archived from the original on December 21, 2010. Retrieved June 7, 2011.
  35. ^ "EXFO and Opnext Achieve Full Interoperability, Successfully Testing IEEE-Compliant 100 Gigabit Ethernet Optics". News release. January 11, 2010. Archived from the original on July 30, 2012. Retrieved June 7, 2011.
  36. ^ "Workshop on 100 Gigabit Ethernet a huge success". DTU news. Technical University of Denmark. February 2, 2011. Archived from the original on 2011-07-19. Retrieved June 7, 2011.
  37. ^ Torben R. Simonsen (January 26, 2011). "Dansk virksomhed klar med test til 100 Gb ethernet". Elektronik Branchen. Archived from the original on 2012-07-15. Retrieved June 7, 2011. (Danish)
  38. ^ "Calnex Solutions Limited | Calnex Solutions Launches Industry-first 100GbE Tester for Synchronisation". RealWire. Retrieved 2015-10-22.
  39. ^ "Industry's First 100G Impairment Emulator Helps Reduce the Effect of Latency in High Speed Ethernet Networks". corporate.spirent.com. 15 Apr 2015. Archived from the original on 2015-12-22. Retrieved 2015-10-22.
  40. ^ "Attero". www.spirent.com. Spirent. Retrieved 15 November 2017.
  41. ^ "Frost & Sullivan Recognizes VeEX's Technology Development". Archived from the original on 2015-06-23. Retrieved 2017-02-09.
  42. ^ "VeEX introduces industry's smallest multiservice, multitasking analyzer for 40/100G networks. | VeEX Inc. | The Verification EXperts". veexinc.com. Retrieved 2017-02-09.
  43. ^ "VeEX enhances UX400 Platform with next-gen CFP2 and CFP4 test modules |". advanced-television.com. Retrieved 2017-02-09.
  44. ^ "VeEX unveils 600G testing for its UX400 platform |". advanced-television.com. Retrieved 2017-02-09.
  45. ^ "Mellanox Enables 100Gb/s Interconnect Solution with Introduction of ConnectX-4 Adapter".
  46. ^ "Mellanox Announces Availability of 100Gb/s Direct Attach Copper and Active Optical Cables".
  47. ^ "Mellanox Introduces the World's First 25/100 Gigabit Open Ethernet-based Switch".
  48. ^ Pal Varga (May 1, 2013). "Aitia C-GEP development platform?". FPGA Networking. Retrieved June 6, 2015.
  49. ^ Pal Varga (June 6, 2016). "FPGA IP core for 100G/40G ethernet?". FPGA Networking. Retrieved June 6, 2016.
  50. ^ Jim Duffy (May 1, 2013). "Arista heading off Cisco/Insieme at 100G SDNs?". Network World. Archived from the original on 2013-05-17. Retrieved May 24, 2013.
  51. ^ Kristin Bent (July 16, 2014). "Arista Leading 100GbE Charge With 7280E Switch Series Launch". CRN. Retrieved February 18, 2016.
  52. ^ Duffy, Jim (November 13, 2012). "Extreme joins Cisco, Brocade, Huawei at 100G". Network World. p. 1. Archived from the original on 2013-01-23. Retrieved January 18, 2013.
  53. ^ Dell Force10 S-series model comparison, visited 2 March 2013
  54. ^ Technical details PowerConnect 8100 series, visited: 2 March 2013
  55. ^ "Chelsio Delivers 40Gb Ethernet Adapter (40GbE), Sets new performance bar for high speed Ethernet". Press release. June 11, 2013. Archived from the original on 2013-06-22. Retrieved June 20, 2013.
  56. ^ "Archived copy". Archived from the original on 2015-07-03. Retrieved 2015-06-08.CS1 maint: archived copy as title (link)
  57. ^ "Archived copy". Archived from the original on 2015-07-03. Retrieved 2015-06-08.CS1 maint: archived copy as title (link)
  58. ^ "Archived copy". Archived from the original on 2015-07-03. Retrieved 2015-06-08.CS1 maint: archived copy as title (link)
  59. ^ 100G in routers Juniper Networks Presentation at ECOC 2009
  60. ^ "Verizon Successfully Completes Industry's First Field Trial of 100 Gbps Optical Network Transmission". Archived from the original on 2014-07-14. Retrieved 2018-11-30.
  61. ^ "Verizon completes industry-leading 100G Ethernet field trial". Archived from the original on 2016-06-11. Retrieved 2018-11-30.
  62. ^ "A game-changing approach to the core".
  63. ^ "Alcatel-Lucent's FP3 network processor routes at 400Gbps". Press release. June 29, 2011. Retrieved June 24, 2013.
  64. ^ David Goldman (May 21, 2012). "How Alcatel-Lucent made the Internet 5 times faster". CNN Money. Retrieved June 24, 2013.
  65. ^ "100 Gigabit Ethernet (100GE): Services unleashed at speed". Company web site. Archived from the original on 2012-11-16. Retrieved June 24, 2013.
  66. ^ Brocade set to unveil 100G Ethernet Archived 2012-07-05 at WebCite Brocade
  67. ^ "3 new services are launched by AMS-IX at MORE IP event". Archived from the original on 2012-07-05. Retrieved 2011-09-05.
  68. ^ "Cisco NGN Transport Solutions" (PDF).
  69. ^ Matsumoto, Craig (April 11, 2011). "AT&T, Comcast Go Live With 100G". Light Reading. Retrieved December 17, 2011.
  70. ^ Liu, Stephen (July 25, 2011). "Cisco Live! Showing Off 100GbE on CRS-3 and ASR 9000 Series". blogs.cisco.com. Archived from the original on December 21, 2011. Retrieved December 17, 2011.
  71. ^ "Cisco unveils network of the future that can learn, adapt and evolve". newsroom.cisco.com. June 20, 2017. Retrieved September 10, 2019.
  72. ^ "Your Catalyst for the Past, Present, and Future". blogs.cisco.com. April 29, 2019. Retrieved September 10, 2019.
  73. ^ "Huawei Successfully Develops 100 Gigabit Ethernet WDM Prototype". Archived from the original on 2012-07-05. Retrieved 2011-09-05.
  74. ^ "Huawei Launches World' s First End-to-End 100G Solutions". Archived from the original on 2012-07-05. Retrieved 2011-09-05.
  75. ^ "Huawei E2E 100G Solution" (PDF). Archived from the original (PDF) on 2012-07-05. Retrieved 2011-09-05.
  76. ^ "Russia's MegaFon Awards Backbone Contract to Huawei".
  77. ^ "Huawei Unveils the World's First 200G High-Speed Line Card for Routers".
  78. ^ "Huawei 200G Solution".
  79. ^ "Оборудование Huawei 100G успешно прошло тестирование в России". Archived from the original on 2012-02-25. Retrieved 2011-09-05.
  80. ^ "Juniper networks introduces breakthrough 100 gigabit Ethernet interface for t series routers".
  81. ^ "Internet2 racing ahead with 100G Ethernet network".
  82. ^ "Juniper Demonstrates Industry's First Live 100G Traffic From the Network Core to Edge". Archived from the original on 2012-07-05. Retrieved 2011-09-05.
  83. ^ "Verizon First Service Provider to Announce 100G Deployment on U.S. Network".
  84. ^ Deploying 100GE JANET UK
  85. ^ "iiNet Pioneers 100GbE with new Juniper Networks Backbone".
  86. ^ "Juniper networks - Life Begins at 40(km) - 100G ZR Optics".
  87. ^ "IEEE 802.3 standard".
  88. ^ Reimer, Jeremy (2007-07-24). "New Ethernet standard: not 40Gbps, not 100, but both". ars technica.
  89. ^ "CFP Multi-Source Agreement". official web site. Archived from the original on 2009-09-28. Retrieved June 24, 2011.
  90. ^ a b Greg Hankins (October 20, 2009). "IEEE P802.3ba 40 GbE and 100 GbE Standards Update" (PDF). North American Network Operators' Group (NANOG) 47 Presentations. Retrieved June 24, 2011.
  91. ^ John D'Ambrosia. "IEEE P802.3ba Objectives" (PDF). Archived (PDF) from the original on 2009-09-28. Retrieved September 25, 2009.
  92. ^ Ilango Ganga (May 13, 2009). "Chief Editor's Report" (PDF). IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force public record. p. 8. Retrieved June 7, 2011.
  93. ^ Ilango Ganga; Brad Booth; Howard Frazier; Shimon Muller; Gary Nicholl (May 13, 2008). "IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force, May 2008 Meeting".
  94. ^ Anderson, Jon. "Rationale for dual-band Rx in 40GBASE-FR" (PDF).
  95. ^ "10 x 10 MSA – Low Cost 100 GB/s Pluggable Optical Transceiver". official web site. 10x10 multi-source agreement. Archived from the original on June 21, 2011. Retrieved June 24, 2011.
  96. ^ "Leading Industry Peers Join Forces to Develop Low-Cost 100G Multi-Source Agreement". Businesswire news release. December 7, 2010. Retrieved June 24, 2011.
  97. ^ "10X10 MSA Ratifies Specification for Low Cost 100 Gb/s 2 Kilometer Links" (PDF). News release. 10x10 MSA. March 4, 2011. Archived from the original (PDF) on 2011-07-18. Retrieved June 24, 2011.
  98. ^ http://www.ieee802.org/3/ck/P802_3ck_Objectives_2018mar.pdf
  99. ^ a b Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
  100. ^ a b c "Evolution of Ethernet Speeds: What's New and What's Next" (PDF). Alcatel-Lucent. 2015-06-03. Retrieved 2018-08-28.
  101. ^ a b c d "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
  102. ^ a b c "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.
  103. ^ "IEEE Communications Magazine December 2013, Vol. 51, No. 12 - Next Generation Backplane and Copper Cable Challenges" (PDF). IEEE Communications Society. 2013-12-01. Retrieved 2018-08-28.
  104. ^ a b "SWDM Alliance MSA". SWDM Alliance. Retrieved 2020-07-27.
  105. ^ "100G PSM4 Specification" (PDF). PSM4 MSA Group. 2014-09-15. Retrieved 2018-08-28.
  106. ^ a b "What's the Difference Between 100G CLR4 and CWDM4?". fiber-optic-transceiver-module.com. 2017-02-12. Retrieved 2018-08-28.
  107. ^ "100G CWDM4 MSA Technical Specifications" (PDF). CWDM4 MSA Group. 2015-11-24. Retrieved 2018-08-28.
  108. ^ Ghiasi, Ali. "100G 4WDM-10 MSA Technical Specifications Release 1.0" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
  109. ^ a b Hiramoto, Kiyo. "100G 4WDM-20 & 4WDM-40 MSA Technical Specifications" (PDF). 4wdm-msa.org. 4-Wavelength WDM MSA. Retrieved 5 April 2021.
  110. ^ "100G CLR4 QSFP28 Optical Transceivers" (PDF). Accelink. 2017-06-30. Retrieved 2018-08-28.
  111. ^ "Open Optics MSA Design Guide" (PDF). Open Compute Project - Mellanox Technologies. 2015-03-08. Archived from the original (PDF) on 2016-02-23. Retrieved 2018-08-28.
  112. ^ "QPSK vs DP-QPSK - difference between QPSK and DP-QPSK modulation". RF Wireless World. 2018-07-15. Retrieved 2018-08-29.
  113. ^ "Cisco 40-Gigabit Ethernet Transceiver Modules Compatibility Matrix". Cisco. 2018-08-23. Retrieved 2018-08-26.
  114. ^ "A Quick Overview of 40GbE & 40GbE Components". Blog of Fiber Transceivers. 2016-01-13. Retrieved 2018-09-21.
  115. ^ "IEEE P802.3bq 40GBASE-T Task Force". IEEE 802.3.
  116. ^ "Approval of IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, IEEE Std 802.3bp-2016 and IEEE Std 802.3br-2016". IEEE. 2016-06-30..
  117. ^ "CFP MSA".
  118. ^ "Cisco CPAK 100GBASE Modules Data Sheet".
  119. ^ "Multi-Vendor Interoperability Testing of CFP2, CPAK and QSFP28 with CEI-28G-VSR and CEI-25G-LR Interface During ECOC 2013 Exhibition" (PDF). Archived from the original (PDF) on 2016-05-23. Retrieved 2019-02-04.
  120. ^ Daniel Dove. "4X25G Optical Modules and Future Optics" (PDF). Archived (PDF) from the original on 2013-07-12. Retrieved 2013-07-04.

Further reading[edit]

  • Overview of Requirements and Applications for 40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview White Paper (Archived 2009-08-01) – Ethernet Alliance
  • 40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview White Paper – Ethernet Alliance

External links[edit]

  • Ethernet Alliance
  • "100G Ethernet cheat sheet: A collection of articles, slideshows, multimedia content on 100G Ethernet". Network World. November 19, 2009. Retrieved 2016-08-24.
  • IEEE P802.3ba 40Gbit/s and 100Gbit/s Ethernet Task Force
  • IEEE P802.3ba 40Gbit/s and 100Gbit/s Ethernet Task Force public area
  • Higher Speed Study Group documents