Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску

Уравнение напряжения Гольдмана-Ходжкина-Каца , более известное как уравнение Гольдмана , используется в физиологии клеточной мембраны для определения обратного потенциала через клеточную мембрану с учетом всех ионов, которые проникают через эту мембрану.

Первооткрывателями этого являются Дэвид Э. Голдман из Колумбийского университета и английские лауреаты Нобелевской премии Алан Ллойд Ходжкин и Бернард Кац .

Уравнение для одновалентных ионов [ править ]

Уравнение напряжения GHK для одновалентных положительных и отрицательных ионных частиц :

Это приводит к следующему, если мы рассмотрим мембрану, разделяющую два -решения: [1] [2] [3]

Это « Нернста -как» , но есть термин для каждого проникающего иона:

  • = мембранный потенциал (в вольтах , эквивалент джоулей на кулон )
  • = селективность для этого иона (в метрах в секунду)
  • = внеклеточная концентрация этого иона (в молях на кубический метр, чтобы соответствовать другим единицам СИ ) [4]
  • = внутриклеточная концентрация этого иона (в молях на кубический метр) [4]
  • = идеальная газовая постоянная (джоулей на кельвин на моль) [4]
  • = температура в кельвинах [4]
  • = Постоянная Фарадея (кулонов на моль)

составляет примерно 26,7 мВ при температуре человеческого тела (37 ° C); при учете формулы замены основания между натуральным логарифмом, ln и логарифмом с основанием 10 , оно становится значением, часто используемым в нейробиологии.

Заряд иона определяет знак вклада мембранного потенциала. Во время действия потенциала действия, хотя мембранный потенциал изменяется примерно на 100 мВ, концентрации ионов внутри и снаружи клетки существенно не меняются. Когда мембрана находится в состоянии покоя, они всегда очень близки к их соответствующим концентрациям.

Вычисление первого члена [ править ]

Используя , , (при условии , температура тела) и тот факт , что один вольт равен одному джоуля энергии на кулоны заряда, уравнение

можно свести к

что является уравнением Нернста .

Вывод [ править ]

Уравнение Гольдмана пытается определить напряжение E m на мембране. [5] Для описания системы используется декартова система координат , при этом направление z перпендикулярно мембране. Предполагая, что система симметрична в направлениях x и y (вокруг и вдоль аксона, соответственно), необходимо учитывать только направление z ; Таким образом, напряжение Е т представляет собой интеграл от г составляющей электрического поля через мембрану.

Согласно модели Гольдмана, только два фактора влияют на движение ионов через проницаемую мембрану: среднее электрическое поле и разница в концентрации ионов от одной стороны мембраны к другой. Предполагается, что электрическое поле на мембране постоянное, поэтому его можно установить равным E m / L , где L - толщина мембраны. Для данного иона, обозначенного A с валентностью n A , его поток j A - другими словами, количество ионов, пересекающих за время и на площадь мембраны, - определяется формулой

Первый член соответствует закону диффузии Фика , который дает поток за счет диффузии вниз по градиенту концентрации , то есть от высокой к низкой концентрации. Постоянная D A - это постоянная диффузии иона A. Второй член отражает поток, обусловленный электрическим полем, который линейно увеличивается с электрическим полем; это соотношение Стокса – Эйнштейна, примененное к электрофоретической подвижности . Константы здесь представляют собой зарядовую валентность n A иона A (например, +1 для K + , +2 для Ca 2+ и -1 для Cl- ), температуры T (в кельвинах ), молярной газовой постоянной R и фарадея F , который представляет собой полный заряд моля электронов .

Это ОДУ первого порядка вида y '= ay + b , где y = [A] и y' = d [A] / d z ; интегрируя обе стороны от z = 0 до z = L с граничными условиями [A] (0) = [A] in и [A] ( L ) = [A] out , получаем решение

где μ - безразмерное число

и P A - ионная проницаемость, определяемая здесь как

Электрический ток плотность J равна заряд д иона , умноженная на поток J A

Плотность тока измеряется в единицах (Амперы / м 2 ). Молярный поток измеряется в моль / (см 2 ). Таким образом, чтобы получить плотность тока из молярного потока, нужно умножить его на постоянную Фарадея F (кулонов / моль). Затем F отменит из приведенного ниже уравнения. Поскольку валентность уже была учтена выше, заряд q A каждого иона в приведенном выше уравнении, следовательно, следует интерпретировать как +1 или -1 в зависимости от полярности иона.

Такой ток связан с каждым типом иона, который может пересечь мембрану; это связано с тем, что для каждого типа иона потребуется отдельный мембранный потенциал для уравновешивания диффузии, но может быть только один мембранный потенциал. По предположению, при напряжении Гольдмана E m полная плотность тока равна нулю.

(Хотя ток для каждого типа ионов, рассматриваемых здесь, отличен от нуля, в мембране есть другие насосы, например Na + / K + -ATPase , которые здесь не рассматриваются, которые служат для уравновешивания тока каждого отдельного иона, так что концентрации ионов с обеих сторон мембраны не изменяются с течением времени в равновесии.) Если все ионы одновалентны, то есть если все n A равны +1 или -1, это уравнение можно записать

решением которого является уравнение Гольдмана

куда

Если двухвалентные ионы , такие как кальций , рассматривается, такие термины, как е появляются, который является квадратом из электронной μ ; в этом случае формула для уравнения Гольдмана может быть решена с использованием формулы квадратиков .

См. Также [ править ]

  • Биоэлектроника
  • Теория кабеля
  • Текущее уравнение GHK
  • Модель Хиндмарша – Роуза
  • Модель Ходжкина – Хаксли
  • Модель Морриса – Лекара
  • Уравнение Нернста
  • Соляная проводимость

Ссылки [ править ]

  1. ^ Эндерле, Джон (2005-01-01), Эндерле, Джон Д.; Blanchard, Susan M .; Бронзино, Джозеф Д. (ред.), «11 - БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ» , Введение в биомедицинскую инженерию (второе издание) , Биомедицинская инженерия, Бостон: Academic Press, стр. 627–691, doi : 10.1016 / b978-0-12- 238662-6.50013-6 , ISBN 978-0-12-238662-6, получено 2020-10-23
  2. ^ Ройсс, Луис (2008-01-01), Альперн, Роберт Дж .; Хеберт, Стивен К. (ред.), «ГЛАВА 2 - Механизмы переноса ионов через клеточные мембраны и эпителии » , Почка Селдина и Гибиша (четвертое издание) , Сан-Диего: Academic Press, стр. 35–56, doi : 10.1016 /b978-012088488-9.50005-x , ISBN 978-0-12-088488-9, получено 2020-10-23
  3. ^ Эндерле, Джон Д. (2012-01-01), Эндерле, Джон Д.; Бронзино, Джозеф Д. (ред.), "Глава 12 - биоэлектрического явления" , Введение в области биомедицинской инженерии (Третье издание) , биомедицинской инженерии, Boston: Academic Press, стр 747-815,. DOI : 10.1016 / b978-0-12 -374979-6.00012-5 , ISBN 978-0-12-374979-6, получено 2020-10-23
  4. ^ a b c d Бхадра, Нарендра (01.01.2015), Килгор, Кевин (редактор), «2 - Физиологические принципы электростимуляции» , Имплантируемые нейропротезы для восстановления функции , Серия изданий Woodhead по биоматериалам, Издательство Woodhead Publishing, стр. . 13-43, DOI : 10.1016 / b978-1-78242-101-6.00002-1 , ISBN 978-1-78242-101-6, получено 2020-10-23
  5. Перейти ↑ Junge D (1981). Возбуждение нервов и мышц (2-е изд.). Сандерленд, Массачусетс: Sinauer Associates. С.  33–37 . ISBN 0-87893-410-3.

Внешние ссылки [ править ]

  • Подпороговые мембранные явления Включает хорошо объясненный вывод уравнения Гольдмана-Ходжкина-Каца.
  • Симулятор уравнения Нернста / Гольдмана
  • Калькулятор уравнения Гольдмана-Ходжкина-Каца
  • Интерактивный Java-апплет Nernst / Goldman Напряжение на мембране рассчитывается интерактивно, поскольку количество ионов изменяется между внутренней и внешней частью ячейки.
  • Потенциал, импеданс и выпрямление в мембранах по Гольдману (1943)