Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Секционный осколочно-фугасный противотанковый снаряд с видимым внутренним кумулятивным зарядом
1: Аэродинамический кожух; 2: полость, заполненная воздухом; 3 - коническая гильза; 4: Детонатор; 5: взрывчатое вещество; 6: Пьезоэлектрический спусковой механизм

Кумулятивный заряд является взрывной заряд в форме , чтобы сфокусировать влияние энергии взрывчатого вещества. Различные типы используются для резки и формовки металла, активации ядерного оружия , пробивания брони и пробивания скважин в нефтегазовой промышленности .

Типичный современный кумулятивный заряд с металлической гильзой в полости заряда может пробивать броневую сталь на глубину, в семь или более раз превышающую диаметр заряда (диаметры заряда, CD), хотя и на большую глубину 10 CD и выше [1] [2] были достигнуты. Вопреки широко распространенному заблуждению (возможно, из-за аббревиатуры HEAT , сокращенно от фугасной противотанковой боеголовки) кумулятивный заряд никоим образом не зависит от нагрева или плавления для своей эффективности; то есть струя кумулятивного заряда не проходит сквозь броню, поскольку ее действие носит чисто кинетический характер [3]  - однако процесс действительно создает значительное тепло и часто имеет значительный вторичный зажигательный эффект.после проникновения.

Эффект Манро [ править ]

Эффект Манро или Неймана - это фокусировка энергии взрыва полым или пустотным разрезом на поверхности взрывчатого вещества. Самое раннее упоминание о полых зарядах относится к 1792 году. Франц Ксавер фон Баадер (1765–1841) в то время был немецким горным инженером; в горном журнале он выступал за коническое пространство на переднем конце взрывного заряда, чтобы увеличить эффект взрывчатого вещества и тем самым сэкономить порох. [4] На какое-то время эта идея была принята в Норвегии и на рудниках в горах Гарц в Германии, хотя в то время единственным доступным взрывчатым веществом был порох, который не является фугасным и, следовательно, неспособен производить ударную волну. что требует кумулятивный эффект. [5]

Первый настоящий эффект полого заряда был достигнут в 1883 году Максом фон Ферстером (1845–1905), [6] руководителем нитроцеллюлозной фабрики Wolff & Co. в Вальсроде , Германия. [7] [8]

К 1886 году Густав Блум из Дюссельдорфа , Германия, подал патент США 342 423 на металлические детонаторы с полусферическими полостями, чтобы сконцентрировать эффект взрыва в осевом направлении. [9] Эффект Манро назван в честь Чарльза Э. Манро , который открыл его в 1888 году. Как гражданский химик, работавший на военно- морской торпедной станции США в Ньюпорте, штат Род-Айленд , он заметил, что когда глыба взрывчатого хлопкас выбитым на нем названием производителя он взорвался рядом с металлической пластиной, на пластине была вырезана надпись. И наоборот, если бы буквы были рельефно подняты над поверхностью взрывчатого вещества, то буквы на пластине также были бы подняты над его поверхностью. [10] В 1894 году Манро сконструировал первый кумулятивный заряд: [11] [12]

Среди проведенных экспериментов ... был один на безопасном кубе длиной двадцать девять дюймов, со стенками толщиной четыре дюйма и три четверти, сделанными из железных и стальных пластин ... [с] полым зарядом динамита девятью фунтами и На нем был взорван половинный вес и незатронутый, в стене было проделано отверстие диаметром три дюйма ... Полый патрон был изготовлен путем привязки динамитных шашек к жестяной банке, при этом открытая горловина последней была помещена вниз. [13]

Хотя открытие Манро кумулятивного заряда было широко освещено в 1900 году в журнале Popular Science Monthly , важность консервной банки «лайнера» полого заряда оставалась непризнанной еще 44 года. [14] Часть этой статьи 1900 года была перепечатана в выпуске Popular Science за февраль 1945 года [15], где описывалось, как работают кумулятивные боеголовки. Именно эта статья, наконец, раскрыла широкой публике, как легендарная Базука на самом деле работала против бронетехники во время Второй мировой войны.

В 1910 году Эгон Нойман из Германии обнаружил, что блок из тротила , который обычно вмятил бы стальную пластину, пробивал в нем отверстие, если бы взрывчатка имела коническое углубление. [16] [17] Военная полезность работ Манро и Неймана долгое время недооценивалась. Между мировыми войнами ученые из нескольких стран - Мирон Яковлевич Сухаревский (Мирон Яковлевич Сухаревский) в Советском Союзе, [18] Уильям Х. Плейс и Дональд Уитли Вудхед в Великобритании, [19] и Роберт Уильямс Вуд в США [20]  - признал, что при взрывах могли образовываться снаряды. Однако только в 1932 году Франц Рудольф Томанек, студент факультета физики ВеныКомпания Technische Hochschule разработала противотанковый снаряд, основанный на эффекте полого заряда. Когда австрийское правительство не проявило интереса к реализации этой идеи, Томанек переехал в берлинскую Высшую техническую школу , где продолжил обучение у эксперта по баллистике Карла Юлиуса Кранца. [21] Там в 1935 году он и Хельмут фон Хуттерн разработали прототип противотанкового снаряда. Хотя характеристики оружия оказались разочаровывающими, Томанек продолжил свои разработки, сотрудничая с Хубертом Шарденом в Waffeninstitut der Luftwaffe (Институт вооружения ВВС) в Брауншвейге. [22]

К 1937 году Шардин считал, что эффекты полого заряда являются результатом взаимодействия ударных волн. Именно во время проверки этой идеи 4 февраля 1938 года Томанек задумал кумулятивное взрывное устройство (или Hohlladungs-Auskleidungseffekt (эффект лайнера полого заряда)). [23] (Это был Густав Адольф Томер, который в 1938 году впервые визуализировал с помощью импульсной радиографии металлическую струю, образовавшуюся в результате взрыва кумулятивного заряда. [24] ) Тем временем Генри Ганс Мохаупт , инженер-химик из Швейцарии, независимо разработал кумулятивный боеприпас в 1935 году, который был продемонстрирован военным Швейцарии, Франции, Великобритании и США. [25]

Во время Второй мировой войны кумулятивные боеприпасы были разработаны Германией ( Panzerschreck , Panzerfaust , Panzerwurfmine , Mistel ), Великобританией ( PIAT , кратерный заряд Beehive), Советским Союзом ( RPG-43 , RPG-6 ) и США ( bazooka ). [26] [27] Разработка кумулятивных зарядов произвела революцию в противотанковой войне . Танки столкнулись с серьезной уязвимостью из-за оружия, которое мог нести пехотинец или самолет.

Одно из первых применений кумулятивных зарядов было осуществлено немецкими войсками на планерах против бельгийского форта Эбен-Эмаэль в 1940 году. [28] Эти подрывные заряды, разработанные доктором Вуэльфкеном из Управления артиллерийского управления Германии, были незащищенными взрывными зарядами [29]. и не производил металлическую струю, как современные кумулятивные боеголовки. Из-за отсутствия металлической гильзы они встряхнули башни, но не уничтожили их, а другие десантники были вынуждены залезать на башни и разбивать стволы орудий. [30]

Приложения [ править ]

Современные военные [ править ]

Общий термин в военной терминологии для кумулятивных боеголовок - это фугасная противотанковая боевая часть (HEAT). HEAT боеголовки часто используются в противотанковых управляемых ракет , неуправляемых ракет , артиллерийских снарядов топливе (как прядут и нецентрифугированной), винтовочных гранат , мин , бомб , торпед , а также различных других видов оружия.

Невоенное [ править ]

В невоенных целях кумулятивные заряды используются при взрывном разрушении зданий и сооружений , в частности, для прорезания металлических свай, колонн и балок [31] [32] [33] и для бурения скважин. [34] В сталеплавильном производстве небольшие кумулятивные заряды часто используются для прокалывания метчиков , забитых шлаком. [34] Они также используются при разработке карьеров, вскрытии льда, разрушении бревен, валке деревьев и сверлении ям для столбов. [34]

Формованные заряды наиболее широко используются в нефтяной и газовой промышленности, в частности, при заканчивании нефтяных и газовых скважин , в которых они взрываются для перфорирования металлической обсадной колонны скважины с интервалами, допускающими приток нефти и газа. [35]

4,5 кг (9,9 фунта) кумулятивного взрывчатого вещества было использовано во время миссии Hayabusa2 на астероиде 162173 Рюгу . Устройство было сброшено на астероид, где космический корабль затем переместился за укрытие и взорвался, оставив кратер шириной около 10 метров, в котором он мог бы дать образец нетронутого астероида. [36]

Функция [ править ]

«Формованный снаряд» состава B весом 40 фунтов (18 кг), используемый саперами. Кумулятивный заряд используется для просверливания отверстия для кратерного заряда.

Типичное устройство состоит из сплошного цилиндра взрывчатого вещества с конической полостью с металлической футеровкой на одном конце и центральным детонатором , набором детонаторов или детонационным волноводом на другом конце. Энергия взрыва высвобождается непосредственно от поверхности взрывчатого вещества ( перпендикулярно ей ), поэтому при формировании взрывчатого вещества энергия взрыва концентрируется в пустоте. Если полость имеет правильную форму (обычно коническую), огромное давлениегенерируемый детонацией взрывчатого вещества, заставляет гильзу в полой полости внутрь разрушаться относительно ее центральной оси. В результате столкновения образуется и выбрасывается высокоскоростная струя металлических частиц вперед вдоль оси. Большая часть материала струи происходит из самой внутренней части гильзы, слоя примерно от 10% до 20% толщины. Остальная часть лайнера образует медленно движущийся кусок материала, который из-за своего внешнего вида иногда называют «морковкой».

Из-за изменения вдоль лайнера скорости его схлопывания скорость струи также меняется по ее длине, уменьшаясь спереди. Это изменение скорости струи растягивает ее и в конечном итоге приводит к ее распаду на частицы. Со временем частицы имеют тенденцию выпадать из выравнивания, что уменьшает глубину проникновения при длительных зазорах.

Кроме того, на вершине конуса, который образует самый передний край струи, лайнер не успевает полностью разогнаться, прежде чем он сформирует свою часть струи. Это приводит к тому, что небольшая часть струи выбрасывается с меньшей скоростью, чем струя, образующаяся позже за ней. В результате начальные части струи сливаются, образуя ярко выраженную более широкую вершину.

Большая часть реактивного самолета движется с гиперзвуковой скоростью. Острие движется со скоростью от 7 до 14 км / с, хвостовая часть реактивной струи - с меньшей скоростью (от 1 до 3 км / с), а снаряд - с еще меньшей скоростью (менее 1 км / с). Точные скорости зависят от конфигурации и удержания заряда, типа взрывчатого вещества, используемых материалов и режима инициирования взрывчатого вещества. При типичных скоростях процесс проникновения создает такое огромное давление, что его можно считать гидродинамическим ; в хорошем приближение, струя и брони могут рассматриваться как невязкие , сжимаемые текучими среды (см, например, [37] ), с их материальными преимуществами игнорируемых.

Недавний метод, использующий магнитодиффузионный анализ, показал, что температура внешних 50% по объему наконечника медной струи во время полета была между 1100K и 1200K, [38] намного ближе к температуре плавления меди (1358 K), чем предполагалось ранее. . [39] Эта температура согласуется с гидродинамическим расчетом, который моделировал весь эксперимент. [40] Для сравнения, двухцветные радиометрические измерения конца 1970-х годов показывают более низкие температуры для различных материалов гильзы кумулятивного заряда, конструкции конуса и типа взрывчатого наполнителя. [41]Кумулятивный заряд Comp-B с медной гильзой и заостренным конусом на вершине имел температуру наконечника струи от 668 К до 863 К при отборе проб из пяти выстрелов. Заряды с октолом с закругленным конусом на вершине обычно имели более высокую температуру поверхности, в среднем 810 К, а температура оловянно-свинцовой гильзы с наполнителем из Comp-B составляла в среднем 842 К. В то время как струя оловянно-свинцовая была определена как жидкая. , струи меди значительно ниже точки плавления меди. Однако эти температуры не полностью согласуются с доказательствами того, что частицы мягкой извлеченной струи меди показывают признаки плавления в ядре, в то время как внешняя часть остается твердой и не может быть отождествлена ​​с объемной температурой. [42]

Расположение заряда относительно цели имеет решающее значение для оптимального проникновения по двум причинам. Если заряд взорвется слишком близко, струе не хватит времени для полного развития. Но струя распадается и рассеивается на относительно небольшом расстоянии, обычно менее двух метров. При таких зазорах он распадается на частицы, которые имеют тенденцию кувыркаться и сноситься с оси проникновения, так что следующие друг за другом частицы имеют тенденцию расширяться, а не углублять отверстие. При очень длинных зазорах скорость теряется из-за сопротивления воздуха , что еще больше ухудшает проникновение.

Залог эффективности полого заряда - его диаметр. По мере того, как проникновение продолжается через цель, ширина отверстия уменьшается, что приводит к характерному действию «кулак в палец», когда размер конечного «пальца» зависит от размера исходного «кулака». Как правило, кумулятивные заряды могут пробивать стальную пластину толщиной от 150% до 700% [43] от их диаметра, в зависимости от качества заряда. Рисунок предназначен для базовой стальной пластины, а не для композитной брони , реактивной брони или других типов современной брони.

Лайнер [ править ]

Самая распространенная форма гильзы - коническая с внутренним углом при вершине от 40 до 90 градусов. Разные углы при вершине приводят к разному распределению массы и скорости струи. Небольшие углы при вершине могут привести к бифуркации струи или даже к тому, что струя вообще не образуется; это объясняется тем, что скорость схлопывания выше определенного порога, обычно немного выше, чем объемная скорость звука материала облицовки. Другие широко используемые формы включают полусферы, тюльпаны, трубы, эллипсы и биконические формы; из разных форм получаются струи с разным распределением скорости и массы.

Вкладыши изготавливаются из многих материалов, включая различные металлы [44] и стекло. Самые глубокие проникновения достигаются с помощью плотного пластичного металла, и очень распространенным выбором была медь . Для некоторых современных средств защиты от брони были приняты молибден и псевдосплавы из вольфрамового наполнителя и медной связки (9: 1, таким образом, плотность ≈18 Мг / м 3 ). Были опробованы почти все распространенные металлические элементы, включая алюминий , вольфрам , тантал , обедненный уран , свинец , олово , кадмий , кобальт., магний , титан , цинк , цирконий , молибден , бериллий , никель , серебро и даже золото и платина . Выбор материала зависит от цели, которую нужно пробить; например, алюминий оказался полезным для бетонных целей.

В раннем противотанковом оружии в качестве материала гильзы использовалась медь. Позже, в 1970-х годах, было обнаружено, что тантал превосходит медь из-за его гораздо более высокой плотности и очень высокой пластичности при высоких скоростях деформации. Другие металлы и сплавы с высокой плотностью имеют недостатки с точки зрения цены, токсичности, радиоактивности или недостаточной пластичности. [45]

Для наиболее глубоких проникновений чистые металлы дают наилучшие результаты, поскольку они демонстрируют наибольшую пластичность, что замедляет распад струи на частицы при ее растяжении. Однако в расходах на заканчивание нефтяных скважин важно, чтобы не образовывалась твердая пробка или «морковь», поскольку она закупоривала бы только что пробитую скважину и препятствовала притоку нефти. Поэтому в нефтяной промышленности футеровки обычно изготавливают методом порошковой металлургии , часто из псевдосплавов, которые, если они не спечены , дают струи, состоящие в основном из диспергированных мелких металлических частиц.

Однако нетканые подкладки холодного прессования не являются водонепроницаемыми и имеют тенденцию быть хрупкими , что позволяет легко повредить их при обращении с ними. Могут использоваться биметаллические футеровки, обычно из оцинкованной меди; при формировании струи слой цинка испаряется и пробка не образуется; недостатком является повышенная стоимость и зависимость образования струи от качества соединения двух слоев. Припой с низкой температурой плавления (ниже 500 ° C) или припоями (например, Sn 50 Pb 50 , Zn 97,6 Pb 1,6, или чистые металлы, такие как свинец, цинк или кадмий); они расплавляются, не доходя до обсадной трубы, и расплавленный металл не забивает отверстие. Другие сплавы, бинарные эвтектики (например, Pb 88,8 Sb 11,1 , Sn 61,9 Pd 38,1 или Ag 71,9 Cu 28,1 ), образуют композитный материал с металлической матрицей с пластичной матрицей с хрупкими дендритами ; такие материалы уменьшают образование пробок, но им трудно придать форму.

Другой вариант - композит с металлической матрицей с дискретными включениями легкоплавкого материала; включения либо плавятся до того, как струя достигает обсадной колонны скважины, ослабляя материал, либо служат местами зарождения трещин , и снаряд разрушается при ударе. Дисперсия второй фазы может быть достигнута также с помощью литейных сплавов (например, меди) с нерастворимым в меди металлом с низкой температурой плавления, например висмутом, 1–5% лития или до 50% (обычно 15–30%). %) вести; размер включений можно регулировать термической обработкой. Также может быть достигнуто неоднородное распределение включений. Другие добавки могут изменять свойства сплава; олово (4–8%), никель (до 30% и часто вместе с оловом), до 8% алюминия, фосфор (образующий хрупкие фосфиды) или 1–5% кремнийобразуют хрупкие включения, служащие очагами зарождения трещин. Можно добавить до 30% цинка, чтобы снизить стоимость материала и образовать дополнительные хрупкие фазы. [46]

Футеровки из оксидного стекла производят струи низкой плотности, что снижает глубину проникновения. Двухслойные гильзы с одним слоем из менее плотного, но пирофорного металла (например, алюминия или магния ) могут использоваться для усиления зажигательного эффекта после бронебойного действия; Для их изготовления можно использовать сварку взрывом , так как в этом случае граница раздела металл-металл будет однородной, не будет содержать значительного количества интерметаллидов и не будет отрицательно влиять на формирование струи. [47]

Глубина проникновения пропорциональна максимальной длине струи, которая является произведением скорости конца струи и времени до образования частиц. Скорость наконечника струи зависит от объемной скорости звука в материале гильзы, время образования частиц зависит от пластичности материала. Максимально достижимая скорость струи примерно в 2,34 раза превышает скорость звука в материале. [48]Скорость может достигать 10 км / с, достигая максимума примерно через 40 микросекунд после взрыва; острие конуса подвергается ускорению около 25 миллионов g. Хвостовая часть реактивной струи достигает около 2–5 км / с. Давление между наконечником форсунки и целью может достигать одного терапевпаскаля. Огромное давление заставляет металл течь как жидкость, хотя дифракция рентгеновских лучей показала, что металл остается твердым; одна из теорий, объясняющих такое поведение, предполагает расплавленное ядро ​​и твердую оболочку струи. Лучшие материалы - это гранецентрированные кубические металлы, так как они наиболее пластичны, но даже графитовые и керамические конусы с нулевой пластичностью демонстрируют значительную пенетрацию. [49]

Взрывной заряд [ править ]

Для оптимального проникновения обычно выбирают фугасное взрывчатое вещество с высокой скоростью детонации и давлением. Наиболее распространенным взрывчатым веществом, используемым в высокопроизводительных противобронированных боеголовках, является октоген (октоген), но никогда в чистом виде, поскольку он был бы слишком чувствительным. Обычно он смешивается с несколькими процентами какого-либо пластикового связующего, например, в полимерно-связанном взрывчатом веществе (PBX) LX-14, или с другим менее чувствительным взрывчатым веществом, таким как TNT , с которым он образует октол . Другими распространенными высокоэффективными взрывчатыми веществами являются композиции на основе гексогена , также либо в виде PBX, либо в смесях с TNT (для образования композиции B и циклотолов ) или воском (циклониты). Некоторые взрывчатые вещества содержат порошкообразныеалюминий для увеличения температуры взрыва и детонации, но это добавление обычно приводит к снижению характеристик кумулятивного заряда. Были проведены исследования по использованию очень высокопроизводительного, но чувствительного взрывчатого вещества CL-20 в кумулятивных боеголовках, но в настоящее время из-за его чувствительности оно было выполнено в виде композитной АТС LX-19 (CL-20 и связующее Estane).

Другие особенности [ править ]

«Формирователь волны» - это тело (обычно диск или цилиндрический блок) из инертного материала (обычно твердого или вспененного пластика, но иногда металла, возможно, полого), вставленного во взрывчатое вещество с целью изменения траектории детонационной волны. Эффект заключается в изменении схлопывания конуса и возникающего в результате образования струи с целью повышения производительности проникновения. Waveshapers часто используются для экономии места; более короткий заряд с формирователем волны может достичь тех же характеристик, что и более длинный заряд без формирователя волны.

Еще одна полезная особенность конструкции - это субкалибровка , то есть использование гильзы, имеющей меньший диаметр (калибр), чем заряд взрывчатого вещества. В обычном заряде взрывчатое вещество у основания конуса настолько тонкое, что оно не может разогнать соседний лайнер до скорости, достаточной для образования эффективной струи. При подкалиброванном заряде эта часть устройства фактически отключена, что приводит к более короткому заряду с той же производительностью.

Защита [ править ]

Во время Второй мировой войны и точность конструкции заряда, и режим его детонации уступали современным боеголовкам. Из-за этой более низкой точности струя изгибалась и разбивалась раньше и, следовательно, на меньшем расстоянии. Полученная дисперсия уменьшила глубину проникновения для данного диаметра конуса, а также сократила оптимальное расстояние зазора. Поскольку заряды были менее эффективны при больших противостояниях, были случайно обнаружены боковые юбки и юбки башни (известные как Schürzen ), установленные на некоторых немецких танках для защиты от обычных противотанковых ружей [50] , чтобы дать реактивному двигателю пространство для рассеивания и, следовательно, также снизить тепловую мощность. проникновение. [ необходима цитата ]

Использование дополнительных разнесенных панелей брони на бронетехнике может иметь противоположный эффект и фактически увеличить пробивную способность некоторых боеголовок с кумулятивным зарядом. Из-за ограничений по длине снаряда / ракеты встроенная дистанция защиты многих боеголовок меньше оптимальной. В таких случаях плинтус эффективно увеличивает расстояние между броней и целью, и боеголовка детонирует ближе к своему оптимальному противостоянию. [51] Плинтус не следует путать с броней клетки, которая используется для повреждения системы взрывателя снарядов РПГ-7 . Броня работает, деформируя внутреннюю и внешнюю ожи и замыкая цепь стрельбы между ракетами.пьезоэлектрический носовой зонд и узел заднего предохранителя . Броня клетки также может вызывать наклон снаряда вверх или вниз при ударе, удлиняя путь проникновения для потока проникновения кумулятивного заряда. Если носовой зонд задевает одну из планок брони клетки, боеголовка будет работать в обычном режиме.

Варианты [ править ]

Есть несколько форм кумулятивных зарядов.

Линейные кумулятивные заряды [ править ]

Линейный кумулятивный заряд

Линейный кумулятивный заряд (ЛКЗ) имеет футеровку с V-образным профилем и переменной длиной. Облицовка окружена взрывчатым веществом, а затем взрывчатое вещество заключено в подходящий материал, который служит для защиты взрывчатого вещества и удержания (уплотнения) его при детонации. «При взрыве фокусировка взрывной волны высокого давления, когда она падает на боковую стенку, приводит к разрушению металлической облицовки LSC, создавая силу резания». [52] Детонация выступает в футеровку, образуя сплошную ножевую (плоскую) струю. Струя режет любой материал на своем пути на глубину, зависящую от размера и материалов, используемых в заряде. Обычно струя проникает от 1 до 1,2 раза [53]ширина заряда. Для резки сложной геометрии существуют также гибкие версии линейного кумулятивного заряда, которые имеют оболочку из свинца или пенопласта высокой плотности и пластичный / гибкий материал футеровки, который также часто бывает свинцом. LSC обычно используются при резке рулонных стальных балок (RSJ) и других структурных объектов, например, при контролируемом сносе зданий. LSC также используются для разделения ступеней многоступенчатых ракет .

Взрывной пенетратор [ править ]

Формирование боевой части EFP. Исследовательская лаборатория ВВС США

Пенетратор с взрывной формовкой (EFP) также известен как самовзрывающийся фрагмент (SFF), сформированный взрывчатым веществом снаряд (EFP), самовоспламеняющийся снаряд (SEFOP), пластинчатый заряд и заряд Мишнея-Шардина (MS). EFP использует действие волны детонации взрывчатого вещества (и, в меньшей степени, толкающее действие продуктов его детонации), чтобы выдвигать и деформировать пластину или тарелку из пластичного металла (такого как медь, железо или тантал) в компактный высокопрочный металл. скоростной снаряд, обычно называемый пулей. Этот снаряд направляется к цели со скоростью около двух километров в секунду. Основным преимуществом EFP перед обычным (например, коническим) кумулятивным зарядом является его эффективность при очень больших зазорах, в сотни раз превышающих диаметр заряда (возможно, сотню метров для практического устройства).

EFP относительно не подвержен влиянию реактивной брони первого поколения и может преодолевать расстояние до 1000 диаметров заряда (CD) с, прежде чем его скорость станет неэффективной при пробитии брони из-за аэродинамического сопротивления, или успешное поражение цели станет проблемой. Удар шара или пули EFP обычно вызывает образование отверстия большого диаметра, но относительно неглубокого, в лучшем случае пары компакт-дисков. Если EFP пробивает броню, могут возникнуть сколы и обширные эффекты позади брони (BAE, также называемые повреждением позади брони, BAD). БАЭ в основном вызывается высокотемпературным и высокоскоростным попаданием фрагментов брони и снаряда во внутреннее пространство и избыточным давлением взрыва.вызванный этим мусором. Более современные версии боеголовок EFP за счет использования расширенных режимов инициирования также могут производить снаряды с удлиненными стержнями (удлиненные пули), многослойные пули и снаряды с оребренными стержнями и пули. Длинные стержни способны пробивать гораздо большую глубину брони, с некоторыми потерями для BAE, многослойные пули лучше поражают легкие или площадные цели, а оребренные снаряды намного точнее.

Использование этого типа боеголовки в основном ограничивается легкобронированными областями основных боевых танков (ОБТ), такими как верхняя, нижняя и задняя бронированные области. Он хорошо подходит для атаки других менее защищенных боевых бронированных машин (ББМ) и для прорыва материальных целей (зданий, бункеров, опор мостов и т. Д.). Новые стержневые снаряды могут быть эффективны против более бронированных участков ОБТ. Оружие, использующее принцип EFP, уже использовалось в бою; « умные » суббоеприпасы в кассетной бомбе CBU-97, использованной ВВС и ВМС США в войне в Ираке в 2003 году, использовали этот принцип, и, как сообщается, армия США экспериментирует с высокоточными артиллерийскими снарядами в рамках проекта SADARM.(Искать и уничтожать броню). Существуют также различные другие снаряды (BONUS, DM 642) и ракетные суббоеприпасы (Motiv-3M, DM 642) и мины (MIFF, TMRP-6), использующие принцип EFP. Примерами боеголовок EFP являются патенты США 5038683 [54] и US6606951. [55]

Тандемная боеголовка [ править ]

Некоторые современные противотанковые ракеты ( RPG-27 , RPG-29 ) и ракеты ( TOW 2B , ERYX , HOT , MILAN ) используют тандемный кумулятивный заряд боеголовки , состоящий из двух отдельных кумулятивных зарядов, расположенных один перед другим, обычно с некоторое расстояние между ними. TOW-2A был первым, кто использовал тандемные боеголовки в середине 1980-х годов - аспект оружия, который армия США должна была раскрыть под давлением средств массовой информации и под давлением Конгресса из-за опасений, что противотанковые ракеты НАТО неэффективны против советских танков, которые были установлены. с новыми коробками ERA. Армия выяснила, что 40-миллиметровая боевая часть с кумулятивным зарядом была установлена ​​на конце разборного зонда TOW-2B. [56] Обычно передний заряд несколько меньше, чем задний, поскольку он предназначен в первую очередь для разрушения ящиков или плиток ERA. Примерами тандемных боеголовок являются патенты США 7363862 [57] и США 5561261. [58] The US HellfireПротивотанковая ракета - одна из немногих, в которых реализован сложный инженерный подвиг, заключающийся в наличии двух кумулятивных зарядов одинакового диаметра в одной боеголовке. Недавно российская оружейная фирма обнаружила 125-миллиметровый снаряд для танковой пушки с двумя кумулятивными зарядами одинакового диаметра, расположенными один за другим, но со смещением заднего одного из них, поэтому его проникающий поток не будет мешать проникновению переднего кумулятивного заряда. Причина, по которой и Hellfire, и российские 125-миллиметровые боеприпасы, имеющие тандемные боеголовки одинакового диаметра, заключаются не в увеличении пробиваемости, а в увеличении эффекта за пределами брони .

Компрессор Войтенко [ править ]

В 1964 году русский ученый предложил адаптировать кумулятивный заряд, первоначально разработанный для пробивания толстой стальной брони, для ускорения ударных волн. [59] Получившееся устройство, немного напоминающее аэродинамическую трубу, называется компрессором Войтенко. [60] Компрессор Войтенко первоначально отделяет тестовый газ от кумулятивного заряда с помощью ковкой стали.пластина. Когда кумулятивный заряд взрывается, большая часть его энергии сосредотачивается на стальной пластине, продвигая ее вперед и выталкивая перед собой тестовый газ. Эймс воплотил эту идею в самоуничтожающейся ударной трубе. 66-фунтовый кумулятивный заряд ускорял газ в 3-сантиметровой стеклянной трубе длиной 2 метра. Скорость образовавшейся ударной волны составила 220 000 футов в секунду (67 км / с). Аппарат, подвергшийся взрыву, был полностью разрушен, но не раньше, чем были извлечены полезные данные. [61] В типичном компрессоре Войтенко кумулятивный заряд ускоряет водородный газ, который, в свою очередь, ускоряет тонкий диск примерно до 40 км / с. [62] [63] Небольшая модификация концепции компрессора Войтенко - сверхсжатая детонация, [64][65] устройство, которое использует сжимаемое жидкое или твердое топливо в стальной камере сжатия вместо традиционной газовой смеси. [66] [67] Дальнейшим расширением этой технологии является ячейка с взрывной алмазной наковальней , [68] [69] [70] [71], использующая несколько противоположных струй кумулятивного заряда, выбрасываемых на одно топливо, заключенное в стальную капсулу, [72] например водород. Топливо, используемое в этих устройствах, наряду с вторичными реакциями горения и длительным импульсом взрыва, создает условия, аналогичные тем, которые встречаются в топливно-воздушных и термобарических взрывчатых веществах. [73] [74] [75] [76]

Ядерные кумулятивные заряды [ править ]

Предлагаемая ядерная двигательная установка проекта Орион потребовала бы разработки ядерных кумулятивных зарядов для реактивного ускорения космических аппаратов. Эффекты формованного заряда, вызванные ядерными взрывами, обсуждались спекулятивно, но, как известно, не были произведены на самом деле. [77] [78] [79] Например, один из первых разработчиков ядерного оружия Тед Тейлор сказал в контексте кумулятивных зарядов: «Устройство деления мощностью в одну килотонну, имеющее правильную форму, могло бы сделать отверстие диаметром десять футов. на тысячу футов в твердую скалу ". [80] Кроме того, пенетратор с ядерным приводом.был предложен для терминальной противоракетной обороны в 1960-х годах. [81] [82]

Примеры в СМИ [ править ]

Система заряда Krakatoa Shaped от Alford Technologies Ltd.
  • Программа Future Weapons канала Discovery признакам Кракатау , [83] простая система оружия кумулятивной разработан Элфорд Technologies для развертывания специальных операций. [84] Оружие состояло из простой пластиковой внешней оболочки, медного конуса и объема пластической взрывчатки. Это устройство эффективно пробивало стальную пластину толщиной 1 дюйм (25 мм) на расстоянии нескольких метров.

См. Также [ править ]

  • Взрывная линза
  • Фугасная головка для сквоша

Ссылки [ править ]

  1. ^ «Архивная копия» (PDF) . Архивировано из оригинального (PDF) 10.10.2012 . Проверено 21 декабря 2013 .CS1 maint: заархивированная копия как заголовок ( ссылка )
  2. Post, Ричард (1 июня 1998 г.). «Формованные заряды пробивают самые сложные цели» (PDF) . Обзор науки и технологий. Архивировано из оригинального (PDF) 17 сентября 2016 года.
  3. ^ «Введение в Shaped Charges, Walters, Army Research Laboratory, 2007» (PDF) . Архивировано из оригинального (PDF) 23 декабря 2016 года . Проверено 23 марта 2017 .
  4. ^ Франц Баадер (март 1792 г.) "Versuch einer Theorie der Sprengarbeit" (Исследование теории взрывных работ), Bergmännisches Journal (Miners 'Journal), vol. 1, вып. 3. С. 193–212. Перепечатано в: Franz Hoffmann et al. ed.s, sämtliche Werke Франца фон Баадера [Полное собрание сочинений Франца фон Баадера…] (Лейпциг (Германия): Herrmann Bethmann, 1854 г.), Часть I, том. 7. С. 153–166.
  5. Дональд Р. Кеннеди, История эффекта сформированного заряда: первые 100 лет (Лос-Аламос, Нью-Мексико: Национальная лаборатория Лос-Аламоса, 1990), стр. 3–5.
  6. ^ Краткую биографию Макса фон Ферстера см. В статье о нем в немецкой Википедии.
  7. Перейти ↑ Kennedy (1990), pp. 5 и 66.
  8. ^ См .:
    • Макс фон Ферстер (1883) Versuche mit Komprimierter Schiessbaumwolle [Эксперименты со сжатым пушечным хлопком] (Берлин, Германия: Mittler und Sohn, 1883).
    • Макс фон Ферстер (1884) «Эксперименты со сжатым ружейным хлопком» , журнал Nostrand Engineering Magazine , vol. 31. С. 113–119.
  9. ^ Патент США 342423 , Густав Bloem, "Shell для детонирующих", выданного 1886-05-25 
  10. ^ См .:
    • Чарльз Э. Манро (1888) «Об некоторых явлениях, вызванных взрывом пушечного хлопка», Труды Естественно-исторического общества Ньюпорта [Род-Айленд] 1883–1886, Отчет №. 6.
    • Чарльз Э. Манро (1888) «Волновые эффекты, возникающие при взрыве порохового хлопка», American Journal of Science , vol. 36. С. 48–50.
    • Чарльз Э. Манро (1888) «Современные взрывчатые вещества» , журнал Скрибнера , том. 3. С. 563–576.
    • Кеннеди (1990), стр. 5–6.
  11. CE Munroe (1894) Исполнительный документ № 20, 53-й Конгресс [США], 1-я сессия, Вашингтон, округ Колумбия
  12. ^ Чарльз Э. Манро (1900) «Применение взрывчатых веществ» , Популярный научный ежемесячник Appleton, том. 56, стр. 300–312, 444–455. Описание первого эксперимента Манро с кумулятивным зарядом появляется на стр. 453 .
  13. Манро (1900), стр. 453.
  14. Перейти ↑ Kennedy (1990), p. 6.
  15. «Это заставляет сталь течь, как грязь» Popular Science , февраль 1945 г., стр. 65–69
  16. Перейти ↑ GI Brown (1998). Большой взрыв: история взрывчатки . Страуд, Глостершир: Sutton Publishing Limited. п. 166 . ISBN 0-7509-1878-0.
  17. ^ В. П. Уолтерс; Я. Зукас (1989). Основы образных зарядов . Нью-Йорк: John Wiley & Sons inc. С. 12–13. ISBN 0-471-62172-2.
  18. ^ М. Сухаревский [М. Сухаревский] (1925) Техника и Снабжение Красной Армии , вып. 170, стр. 13–18; (1926) Война и Техника (Война и техника), вып. 253, стр. 18–24.
  19. ^ Уильям Пэйман; Дональд Уитли Вудхед и Гарольд Титман (15 февраля 1935 г.). «Взрывные волны и ударные волны, часть II - Ударные волны и продукты взрыва, испускаемые подрывающими детонаторами» . Труды Лондонского королевского общества . 148 (865): 604–622. DOI : 10.1098 / RSPA.1935.0036 .См. Также: W. Payman & DW Woodhead (22 декабря 1937 г.). «Взрывные волны и ударные волны, V - Ударная волна и продукты взрыва от детонации взрывчатых веществ» . Труды Королевского общества Лондона . 163 (915): 575–592. DOI : 10.1098 / rspa.1937.0246 .
  20. RW Wood (2 ноября 1936 г.). «Оптические и физические эффекты взрывчатых веществ». Труды Лондонского королевского общества . 157А (891): 249–261.
  21. Биографию Карла Юлиуса Кранца (1858–1945) см .:
    • Питер ОК Крел (2009). История ударных волн, взрывов и ударов: хронологический и биографический справочник . Берлин, Германия: Springer-Verlag. С. 1062–1063. ISBN 9783540304210.
    • Немецкая Википедия: Карл Кранц
  22. ^ Helmut W. Malnig (2006) "Профессор Thomanek унд умереть ENTWICKLUNG дер Präzisions-Hohlladung" (профессор Thomanek и развитие точности полого заряда), Truppendienst , нет. 289. Доступно в Интернете по адресу: Bundesheer (Федеральная армия (Австрии)).
  23. Перейти ↑ Kennedy (1990), p. 9.
  24. ^ См .:
    • Кеннеди (1990), стр. 63.
    • Krehl (2009), стр. 513.
  25. ^ См .:
    • H. Mohaupt, «Глава 11: Формованные заряды и боеголовки», в: FB Pollad и JA Arnold, ed.s, Aerospace Ordnance Handbook (Englewood Cliffs, New Jersey: Prentice-Hall, 1966).
    • Кеннеди (1990), стр. 10–11.
    • Уильям П. Уолтерс (сентябрь 1990 г.) «Концепция фигурных зарядов. Часть 2. История фигурных зарядов», Технический отчет BRL-TR-3158, Лабораторное командование армии США, Лаборатория баллистических исследований (Абердинский испытательный полигон, Мэриленд), стр. 7. Доступно в Интернете по адресу: Центр технической информации Министерства обороны.
  26. Дональд Р. Кеннеди, « История эффекта сформированного заряда: первые 100 лет », DR Kennedy and Associates, Inc., Маунтин-Вью, Калифорния, 1983.
  27. ^ Джон Пайк. «Формованный заряд» . globalsecurity.org .
  28. Полковник Джеймс Э. Мразек (в отставке) (1970). Падение Эбена Эмаэля . Люси. ASIN B000IFGOVG . 
  29. ^ Томанек, Рудольф (1960). "Разработка полых зарядов с футеровкой" (PDF) . Эксплосивстоффе . 8 (8) . Проверено 28 апреля 2015 года .
  30. ^ Лукас, Джеймс (1988). Storming eagles: немецкие воздушно-десантные войска во время Второй мировой войны . Лондон: оружие и доспехи. п. 23. ISBN 9780853688792.
  31. ^ "Мост Паркерсбург-Бельпре" . Контролируемый снос, Inc . Архивировано из оригинала на 2011-07-08 . Проверено 24 апреля 2011 .
  32. ^ "500 Вуд Стрит Билдинг" . Контролируемый снос, Inc . Архивировано из оригинала на 2011-07-08 . Проверено 24 апреля 2011 .
  33. ^ "Semtex RAZOR" . Mondial Defense Systems . Проверено 24 апреля 2011 .
  34. ^ a b c Уолтерс, Уильям. «Обзор концепции Shaped Charge» (PDF) . Архивировано из оригинального (PDF) 19 августа 2011 года . Проверено 27 августа 2011 .
  35. ^ «Формованный заряд» . globalsecurity.org.
  36. ^ Видео на YouTube
  37. ^ Г. Биркгоф , Д. П. Макдугалл, Э. М. Пью и Г. И. Тейлор , " [1] ," J. Appl. Phys. , т. 19. С. 563–582, 1948.
  38. ^ Улиг, В. Кейси; Хаммер, Чарльз (2013). «Полетные измерения проводимости и температуры сверхскоростных снарядов» . Разработка процедур . 58 : 48–57. DOI : 10.1016 / j.proeng.2013.05.008 .
  39. ^ Уолтерс, Уильям (1998). Основы Shaped Charges (издание в мягкой обложке с исправлениями, ред.). Балтимор Мэриленд: CMCPress. п. 192. ISBN. 0-471-62172-2.
  40. Sable, P. (2017). "Определение температуры в полете формованных проникающих зарядов в CTH" . Разработка процедур . 204 : 375–382. DOI : 10.1016 / j.proeng.2017.09.782 .
  41. ^ Фон Холле, WG; Тримбл, Дж. Дж. (1977). «Измерение температуры струй заряда из меди и эвтектического металла». Лаборатория баллистических исследований армии США (BRL-R-2004).
  42. ^ Лассила, DH; Nikkel, DJ Jr .; Кершоу, Р.П .; Уолтерс, WP (1996). Анализ «мягких» восстановленных формованных частиц зарядовой струи (отчет). Библиотеки Университета Северного Техаса, Электронная библиотека, Департамент правительственных документов. DOI : 10.2172 / 251380 . UCRL-JC-123850.
  43. Jane's Ammunition Handbook, 1994 , стр. 140–141, касается заявленной бронепробиваемости ≈700 мм шведских 106 3A-HEAT-T и австрийских RAT 700 HEAT снарядов для 106-мм безоткатной винтовки M40A1.
  44. ^ «Формованные материалы вкладыша заряда: ресурсы, процессы, свойства, затраты и приложения, 1991» (PDF) . dtic.mil . Проверено 31 марта 2018 года .
  45. ^ Алан М. Рассел и Кок Лунг Ли, Взаимоотношения структура-свойство в цветных металлах (Хобокен, Нью-Джерси: John Wiley & Sons, 2005), стр. 218 .
  46. ^ "Медные сплавы для гильз кумулятивного заряда - Олин Корпорейшн" . freepatentsonline.com .
  47. ^ "Способ изготовления биметаллической гильзы для кумулятивного заряда" Патент США 4,807,795.
  48. ^ Манфред Хельд. « Вкладыши для кумулятивных зарядов, Архивировано 7 июля2011 г. на Wayback Machine », Journal of Battlefield Technology , т. 4, вып. 3 ноября 2001 г.
  49. ^ Дойг, Алистер (март 1998). «Некоторые металлургические аспекты гильз кумулятивного заряда» (PDF) . Журнал Battlefield Technology . 1 (1). Архивировано из оригинального (PDF) 24 июля 2011 года.
  50. ^ Хилари Л. Дойл; Томас Л. Джентц и Тони Брайан (25 ноября 2001 г.). Panzerkampfwagen IV Ausf.G, H и J 1942–45 . ISBN 9781841761831.
  51. ^ WILEY-VCH Verlag GmbH, D-69451 Weinheim (1999) - Горючие вещества, взрывчатые вещества, пиротехника 24 - Коэффициенты эффективности для систем реактивной брони с взрывчатым веществом - стр. 71
  52. ^ Accurate Energetic Systems LLC [2] "Заряд линейной формы
  53. ^ «Линейный заряд» (PDF) . aesys.biz . ООО "Точные Энергетические Системы".
  54. ^ Эрнест L.Baker, Пай-Лянь Лу, Брайан Fuchs и Барри Фишберн (1991) « Высокая взрывное устройство для проецирования длинных стержней высокой скорости »
  55. ^ Арнольд С. Кляйн (2003) " Ограничивающее противотанковое / противотанковое оружие "
  56. ^ Гудман А. "КАНДИДАТЫ АНТИТАНКОВ АРМИИ РАСПРОСТРАНЯЮТСЯ" Журнал вооруженных сил International / декабрь 1987, стр. 23
  57. ^ Джейсон C.Gilliam и Дарины L.Kielsmeier (2008) « Многоцелевая единая инициирована тандем боеголовка »
  58. ^ Клаус Lindstadt и Манфред Клары (1996) « Тандем боеголовки со вторичным снарядом »
  59. ^ Войтенко (Войтенко), А.Е. (1964) «Получение газовых струй большой скорости» (Получение высокоскоростных газовых струй), Доклады Академии Наук СССР (Доклады Академии Наук СССР), 158 : 1278-1280.
  60. ^ НАСА, " Самоубийственная аэродинамическая труба "
  61. ^ GlobalSecurity « Формированная история заряда »
  62. Взрывные ускорители " Имплозионная пушка Войтенко "
  63. ^ II Гласс и Дж. К. Пуансо, " УДАРНАЯ ТРУБКА ПРИ ИМПЛОЗИИ "
  64. ^ Сюдзо Фудзивара (1992) « Взрывная техника для создания высокого динамического давления »
  65. ^ З.Ы. Лю, « Overdriven Детонация взрывчатых веществ из - за высокую скорость Тарелка Impact Архивированных 2009-03-27 в Wayback Machine »
  66. ^ Чжан, Фан (Medicine Hat, Альберта) Мюррей, Стивен Берк (Medicine Hat, Альберта), Хиггинс, Эндрю (Монреаль, Квебек) (2005) " Метод сверхсжатой детонации и устройство для осуществления такой детонации [ постоянная мертвая связь ] "
  67. ^ Джерри Пентел и Гэри Г. Фэрбенкс (1992) " Многоступенчатый боеприпас "
  68. Джон М. Хеберлин (2006) « Улучшение твердых взрывоопасных боеприпасов с использованием светоотражающих кожухов »
  69. ^ Фредерик Дж. Майер (1988) " Обработка материалов с использованием химически управляемых сферически-симметричных имплозий "
  70. Дональд Р. Гарретт (1972) " Аппарат для взрыва алмазов "
  71. ^ Л. В. Альтшулер, К. К. Крупников, В. Н. Панов, Р. Ф. Трунин (1996) " Взрывные лабораторные устройства для исследования сжатия ударной волны "
  72. ^ А. А. Джардини и Дж. Э. Тайдингс (1962) " Алмазный синтез: наблюдения за механизмом образования "
  73. ^ Ливерморской национальной лаборатории (2004) « Переход к крайностям в архив 2008-12-07 в Wayback Machine »
  74. ^ Раймонд Жанло , Питер М. Селлерс, Гилберт Коллинз, Джон Х. Эггерт, Канани К.М. Ли, Р. Стюарт МакВильямс, Стефани Бригу и Пол Лубейр (2007) Достижение состояний высокой плотности посредством ударно-волновой нагрузки предварительно сжатых образцов »
  75. ^ Ф. Винтерберг " Предполагаемые метастабильные сверхвзрывчатые вещества, образованные под высоким давлением для термоядерного зажигания "
  76. ^ Янг К. Бэ (2008) " Метастабильное молекулярное состояние внутренней оболочки (MIMS) "
  77. ^ Андре Гспонер (2008) « Ядерное оружие четвертого поколения: военная эффективность и побочные эффекты »
  78. ^ Дайсон, Джордж, Проект Орион: Атомный космический корабль 1957–1965 , стр. 113. ISBN 0-14-027732-3 . 
  79. ^ Дайсон, Проект Орион , стр. 220.
  80. ^ Макфи, Джон, Кривая связывающей энергии , стр.159 ISBN 0-374-51598-0 
  81. ^ Флешеты, произведенные взрывным способом; Отчет JASON 66-121, Институт оборонного анализа, 1966 г.
  82. ^ Интервью с доктором Ричардом Бланкенбеклером http://www.aip.org/history/ohilist/5196.html
  83. ^ "YouTube - Оружие будущего: Кракатау" . DiscoveryNetworks.
  84. ^ "Explosives.net - Продукция" . Alford Technologies. Архивировано из оригинала на 2011-10-01 . Проверено 17 октября 2009 .

Дальнейшее чтение [ править ]

  • Основы Shaped Charges , WP Walters, JA Zukas, John Wiley & Sons Inc., июнь 1989 г., ISBN 0-471-62172-2 . 
  • Тактические ракетные боеголовки , Джозеф Карлеоне (ред.), Progress in Astronautics and Aeronautics Series (V-155), опубликованный AIAA, 1993, ISBN 1-56347-067-5 . 

Внешние ссылки [ править ]

  • Формованные заряды - объяснение эффекта Манро (Взрывы и ударные волны) на YouTube
  • Научно-популярная статья 1945 года , раскрывающая, наконец, секреты кумулятивного оружия; статья также включает оттиски 1900 научно-популярных рисунков экспериментов профессора Манро с грубыми кумулятивными зарядами.
  • Элементы конструкции оружия деления
  • Фигурные бомбы усиливают атаки Ирака
  • Фигурные заряды пронзают самые сложные цели
  • Разработка первых полых зарядов немцами во время Второй мировой войны
  • Использование кумулятивных зарядов и защита от них во время Второй мировой войны