Геометрический центр


Геометрический центр дискретного множества точек евклидова пространства (говоря статистическим языком — выборки) — это точка, в которой минимизируется сумма расстояний до точек множества. Геометрический центр обобщает медиану в математической статистике, которая минимизирует расстояния в одномерной выборке данных. Таким образом, геометрический центр отражает центральную тенденцию в пространствах высокой размерности. Понятие известно также по названиям 1-медиана [1], пространственная медиана[2], или точка Торричелли[3].

Геометрический центр является важной оценочной функцией сдвига в статистике[4], в которой это понятие известно как оценка L1[5]. Поиск геометрического центра является также стандартной задачей при размещении объектов, где моделируется расположение объектов (производства или потребления) с целью минимизации транспортных расходов[6]

Специальный случай задачи для трёх точек на плоскости (то есть m=3 и n=2 в терминах, описанных ниже) иногда описывается как задача Ферма. Она возникает при построении минимальных деревьев Штейнера и впервые была поставлена как задача Пьером Ферма, а решил её Эванджелиста Торричелли[7]. Решение этой задачи известно теперь как точка Ферма треугольника[8]. В свою очередь, поиск геометрического центра можно обобщить до задачи минимизации суммы взвешенных расстояний. Эта задача известна как задача Вебера, поскольку Альфред Вебер обсуждал эту задачу в книге 1909 года по вопросам размещения объектов[2]. Некоторые источники вместо этого используют название задача Ферма – Вебера[9], но некоторые источники используют то же название для невзвешенной задачи[10]

Весоловский[11] дал обзор задачи геометрического центра. Смотрите статью Фекете, Мичела и Бойера[12] с обсуждением обобщения задачи для случая недискретных множеств.

Формально, если задано множество, содержащее m точек , где все , геометрический центр определяется как

Заметьте, что здесь arg min означает значение аргумента , на котором достигается минимальная сумма. Это точка , для которой сумма всех евклидовых расстояний до , минимально.