Группа Ри


Группы Ри — это группы лиева типа над конечным полем, которые построил Ри[1][2] из исключительных автоморфизмов диаграмм Дынкина, которые обращают направление кратных рёбер, что обобщает группы Судзуки[англ.], которые нашёл Судзуки, используя другой метод. Группы были последними открытыми в бесконечных семействах конечных простых групп[англ.].

В отличие от групп Штейнберга, группы Ри не задаются точками редуктивной алгебраической группы, определённой над конечным полем. Другими словами, нет никакой «алгебраической группы Ри», связанной с группами Ри таким же образом, каким (скажем) унитарные группы связаны с группами Штейнберга. Однако существуют некоторые экзотические псевдоредуктивные алгебраические группы[англ.] над несовершенными полями, построение которых связано с построением групп Ри, так как они используют те же экзотические автоморфизмы диаграммы Дынкина, которые меняют длины корней.

Титс[3] определил группы Ри над бесконечными полями характеристики 2 и 3. Титс[4] и Хи[5] ввели группы Ри бесконечномерных обобщённых алгебр Каца-Муди[англ.].

Если X является диаграммой Дынкина, Шевалле построил расщепляемые алгебраические группы, соответствующие X, в частности, дающие группы X(F) со значениями в поле F. Эти группы имеют следующие автоморфизмы:

Группы Штейнберга и Группы Шевалле можно построить как фиксированные точки эндоморфизма X(F)для алгебраического замыкания поля F. Для групп Шевалле автоморфизм является эндоморфизмом Фробениуса группы F, в то время как для групп Штейнберга автоморфизм является эндоморфизмом Фробениуса, помноженным на автоморфизм диаграммы Дынкина.

Над полями характеристики 2 группы B2(F) и F4(F) и над полями характеристики 3 группы G2(F) имеют эндоморфизм, квадрат которого является эндоморфизмом , связанным с эндоморфизмом Фробениуса поля F. Грубо говоря, этот эндоморфизм приходит из автоморфизма порядка 2 диаграммы Дынкина, где игнорируется длина корней.