Доказательство иррациональности π


В 1760-х Иоганн Генрих Ламберт доказал, что число π иррационально, то есть не может быть представлено дробью a/b, где a — целое число, b — натуральное число. В XIX веке Шарль Эрмит нашел еще одно доказательство, пользуясь только базовыми средствами математического анализа. В дальнейшем Мэри Картрайт, Айвен Нивен и Никола Бурбаки смогли упростить доказательство Эрмита, а Миклош Лацкович упростил доказательство Ламберта.

В 1761 году Ламберт доказал иррациональность π, исходя из найденного им представления тангенса в виде непрерывной дроби:

Ламберт доказал, что если x не равно нулю и рационально, то это выражение иррационально. Так как tg(π/4) = 1, отсюда следует, что π/4 иррационально и, следовательно, π иррационально тоже.[2]

В этом доказательстве используется факт, что π является наименьшим положительным числом, половина которого является нулем косинуса, что доказывает иррациональность π 2 .[3][4] Как и во многих доказательствах иррациональности числа, это доказательство от противного.

Рассмотрим последовательности функций A n и U n из в для , заданные формулой:

где P n и Q n — полиномиальные функции с целыми коэффициентами, степень P n меньше или равна ⌊n/2⌋. В частности, An(π/2)=Рn2/4).