Классификация Петрова


Классификация Петрова (иногда классификация Петрова — Пирани, редко классификация Петрова — Пирани — Пенроуза) описывает возможные алгебраические симметрии тензора Вейля для каждого события на псевдоримановом многообразии.

Эта классификация активней всего используется при изучении точных решений уравнений Эйнштейна, хотя вообще говоря представляет собой абстрактный математический результат, не зависящий от какой-либо физической интерпретации. Классификация была впервые предложена в 1954 году А. З. Петровым и в 1957 независимо Феликсом Пирани.

Тензор ранга 4, обладающий антисимметрией по первой и второй паре индексов, например тензор Вейля, в каждой точке многообразия можно представить как линейный оператор  : , действующий в векторном пространстве бивекторов:

В этом случае естественно поставить задачу нахождения собственных значений и собственных векторов (или собственных бивекторов) , таких что

В четырёхмерных псевдоримановых многообразиях в каждой точке пространство бивекторов шестимерно. Однако, симметрии тензора Вейля ограничивают размерность пространства собственных бивекторов до четырёх. Таким образом, тензор Вейля в данной точке может иметь максимум четыре линейно независимых собственных бивектора.

Точно так же как в обычной теории собственных векторов линейного оператора, собственные бивекторы тензора Вейля могут быть кратными. Кратность собственных бивекторов указывает на некоторую дополнительную алгебраическую симметрию тензора Вейля в данной точке; это означает, что тип симметрии тензора Вейля можно определить, решая уравнение 4-го порядка для его собственных значений.