Коммутативное кольцо


Коммутативное кольцо — кольцо, в котором операция умножения коммутативна (обычно также подразумевается её ассоциативность и существование единицы). Изучением свойств коммутативных колец занимается коммутативная алгебра.

Некоторые из последующих определений существуют и для некоммутативных колец, однако становятся более сложными. Например, идеал в коммутативном кольце автоматически является двусторонним, что существенно упрощает ситуацию.

Внутренняя структура коммутативного кольца определяется структурой его идеалов, то есть непустых подмножеств, замкнутых относительно сложения, а также умножения на произвольный элемент кольца. По данному подмножеству F = {fj}jJ коммутативного кольца R можно построить наименьший идеал, содержащий это подмножество. А именно, это пространство конечных линейных комбинаций вида

Идеал, порожденный одним элементом, называется главным. Кольцо, в котором все идеалы главные, называется кольцом главных идеалов, два важных примера таких колец — и кольцо многочленов над полем k . Любое кольцо имеет как минимум два идеала — нулевой идеал и само кольцо. Идеал, который не содержится в другом несобственном (не совпадающем с самим кольцом) идеале называется максимальным. Из леммы Цорна следует, что в любом кольце существует хотя бы один максимальный идеал.

Определение идеала построено таким образом, что позволяет «поделить» кольцо на него, то есть существует факторкольцо R / I: это множество смежных классов по I с операциями

Эти операции определены корректно, например, (a + I)(b + I) = ab + aI + Ib + I*I = ab + I, так как aI принадлежит I и т. д. Из этого понятно, почему определение идеала именно такое.