Математические основы квантовой механики


Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем[1] (открытие волн материи), В. Гейзенбергом[2] (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером[3] (уравнение Шрёдингера), Н. Бором[4] (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики и придал им современную форму П. А. М. Дирак[5][6]. Отличительным признаком математических уравнений квантовой механики является наличие в них символа постоянной Планка.

В качестве основных характеристик для описания физических систем в квантовой механике используются наблюдаемые величины и состояния.

Наблюдаемые величины моделируются линейными самосопряжёнными операторами в комплексном сепарабельном гильбертовом пространстве (пространстве состояний)[7]. Каждой физической величине соответствует линейный эрмитов оператор или матрица. Например, радиусу-вектору частицы соответствует оператор умножения , импульсу частицы соответствует оператор , моменту импульса соответствует оператор

Состояния моделируются классами нормированных элементов этого пространства (векторами состояний), отличающимися друг от друга только комплексным множителем, с единичным модулем (нормированные волновые функции).[7]

Волновые функции удовлетворяют квантовому принципу суперпозиции: если два возможных состояния изображаются волновыми функциями и , то существует и третье состояние, изображаемое волновой функцией

где и -произвольные амплитуды[8].