Проблема измерения


Проблема измерения в квантовой механике — проблема определения когда происходит (и происходит ли) коллапс волновой функции. Неспособность наблюдать такой коллапс напрямую породила разные интерпретации квантовой механики и сформулировала ключевой набор вопросов, на которые должна дать ответы каждая интерпретация.

Волновая функция в квантовой механике эволюционирует детерминировано согласно уравнению Шрёдингера как линейная суперпозиция разных состояний. Однако реальные измерения всегда находят физическую систему в определённом состоянии. Любая последующая эволюция волновой функции основывается на состоянии, в котором система была обнаружена при измерении, что означает, что измерение «сделало что-то» в отношении системы, что явно не является последствием эволюции Шрёдингера. Проблема измерения описывает что есть это «что-то», каким образом суперпозиция множества возможных значений становится единым измеренным значением.

Иными словами (перефразируя Стивена Вайнберга[1][2]), волновое уравнение Шрёдингера определяет волновую функцию в любое более позднее время. Если наблюдатели и их измерительные приборы описаны детерминированной волновой функцией, почему мы можем предсказать только вероятности, а не точный результат измерений? Или обобщая: Каким образом можно установить соответствие между квантовой и классической реальностью?[3]

Мысленный эксперимент, часто используемый, чтобы проиллюстрировать проблему измерения — это «парадокс» кота Шрёдингера. Механизм устроен так, чтобы убить кота, если произойдёт какое-либо квантовое событие, такое как распад радиоактивного атома. Таким образом судьба массивного объекта, кота, переплетена с судьбой квантового объекта, атома. До наблюдения, в соответствии с уравнением Шрёдингера и многочисленными экспериментами с частицами, атом находится в квантовой суперпозиции, линейной комбинации распавшихся и нераспавшихся состояний, которые со временем эволюционируют. Следовательно кот так же должен быть в суперпозиции, линейной комбинации состояний которые могут быть охарактеризованы как «живой кот» и состояний, которые могут быть охарактеризованы как «мертвый кот». Каждая из этих возможностей ассоциирована со специфической ненулевой амплитудой вероятностей. Однако, единичное, отдельное наблюдение кота не находит суперпозицию: оно всегда находит либо живого, либо мертвого кота. После наблюдения кот определённо жив или мертв. Вопрос: Как вероятности преобразуются в реальный, четко определённый классический результат?

Копенгагенская интерпретация самая старая и возможно всё ещё самая широко распространенная интерпретация квантовой механики.[4][5][6][7] В целом, она постулирует, что есть что-то в акте наблюдения, что приводит к коллапсу волновой функции. Как это происходит является предметом споров. В основном, сторонники Копенгагенской интерпретации склонны быть нетерпимы к эпистемологическим объяснениям механизма, стоящим за ней. Эта позиция резюмирована в часто цитируемой мантре «Заткнись и вычисляй!»[8]