Резуховидка Таля


Резухови́дка (резу́шка) Та́ля (лат. Arabidopsis thaliana) — растение; вид рода Резуховидка (Arabidopsis) семейства Капустные (Brassicaceae). Это небольшое цветковое растение; его исходный ареал включает Европу, Азию и север Африки, а в наше время резуховидка Таля распространилась по всем континентам, кроме Антарктиды. В связи с относительно коротким циклом развития является удобным модельным организмом в молекулярно-биологических, генетических и физиологических исследованиях, где известна под транслитерацией родового латинского названия — Арабидо́псис. Геном арабидопсиса является одним из наименьших геномов цветковых растений (меньшие геномы только у растений рода Генлисея (Genlisea) семейства Пузырчатковые) и первым секвенированным геномом растения. Арабидопсис — популярный объект для исследования жизнедеятельности растений, в том числе развития цветка и фототропизма.

Резуховидка Таля может пройти полный цикл развития за шесть недель и относится к типичным эфемерам. Цветоносный побег заканчивает рост в течение трёх недель. Цветки, как правило, самоопыляются. В лабораторных условиях арабидопсис выращивают в чашках Петри, освещая флуоресцентными лампами, либо в теплицах[2].

Первое описание мутантной формы Arabidopsis было сделано в 1873 году Александром Брауном, который описал фенотип двойных цветков (мутантный ген подобен гену Agamous, клонированному в 1990 году)[3]. Однако лишь в 1943 году Фридрих Лайбах (описавший кариотип растения в 1907 году) предложил использовать арабидопсис в качестве модельного организма[4]. Его студентка Эрна Рейнхольц в 1945 году опубликовала результаты своих исследований, описав первую коллекцию мутантов Arabidopsis, полученных при помощи рентгеновского облучения.

В 1950-х и 1960-х годах Джон Лангридж и Джордж Редей сделали большой вклад в становление арабидопсиса как удобного растения для лабораторных экспериментов. Сообщество исследования арабидопсиса Arabidopsis Information Service (AIS) было создано в 1964 году. Первая International Arabidopsis Conference была проведена в 1965 году в Геттингене, Германия.

Арабидопсис широко используется в качестве модельного организма для изучения генетики и биологии развития растений[5][6]. Считается, что арабидопсис сыграл для генетики растений такую же роль, как домовая мышь и дрозофила фруктовая для генетики животных.

Широко используется для исследований в космосе. В частности, выращивалась на советской станции «Салют-7» в 1982 году[7]. НАСА планировало выращивать арабидопсис на Луне в 2015 году[8], а авторы проекта Mars One — на Марсе в 2018-м[9].


Двойные мутанты цветков Arabidopsis (впервые описаны в 1873 году)
Модель ABC развития цветка была разработана при изучении арабидопсиса
8-дневный корень арабидопсиса. Коричневый цвет — эпидермис, красный — осевой цилиндр, синий — эндодерма, зелёный — перицикл. Из исследования экспрессии белков тонопласта (TIP-аквапоринов), авт. Gattolin et al., 2009[22].
Двойное оплодотворение у арабидопсиса: схема и микрофотографии. а: схема развития женского гаметофита. Гаплоидная функциональная мегаспора (FM) развивается из диплоидной мегаспоровой материнской клетки (MMC) в ходе двух мейотических делений (1). Три синцитиальных митотических деления (2) превращают FM в восьмиядерную клетку. В результате последующей миграции ядер, разбития на отдельные клетки, слияния ядер и дифференциации (3) возникает зародышевый мешок с восемью ядрами. Он содержит яйцеклетку (EC), две клетки-синергиды (SC) у пыльцевхода, три клетки-антиподы (AP) у противоположного полюса, и одну вакуолизированную гомо-диплоидную центральную клетку (CC) посередине. После этого антиподы разрушаются. Разрушение одной синергиды предшествует врастанию пыльцевой трубки (PT), и две клетки-спермии (SP) независимо друг от друга оплодотворяют яйцеклетку и центральную клетку, приводя к развитию соответственно диплоидного эмбриона (EM) и триплоидного эндосперма (EN). SUS — суспензор. VN — вегетативное ядро. На кадрах b-f тот же процесс представлен в виде фотографий (ii — внутренние оболочки, oi — внешние). Как синхронные, так и асинхронные свободные митотические деления ядер (кадр e, стрелки) приводят к появлению свободного ядерного эндосперма (FNE), показанного на кадре f. Врезка в кадре e — изображение развивающейся зиготы (ZY). Из исследования Johnston et al., 2007[23]