Сверхтекучесть


Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в 2000-е годы сверхтекучесть была обнаружена и в другой системе: в разрежённых атомных бозе-конденсатах.

Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия-4 являются бозонами (6 фермионов дают целый спин), квантовая механика допускает нахождение в одном состоянии произвольного числа таких частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеивания энергии попросту не будет происходить. Жидкость будет течь без трения.

Сверхтекучесть жидкого гелия-II ниже лямбда-точки (T = 2,172 К) была экспериментально открыта в 1938 году П. Л. Капицей (Нобелевская премия по физике за 1978 год) и Джоном Алленом. Уже до этого было известно, что при прохождении этой точки жидкий гелий испытывает фазовый переход, переходя из полностью «нормального» состояния (называемого гелий-I) в новое состояние так называемого гелия-II, однако только Капица показал, что гелий-II течёт вообще (в пределах экспериментальных погрешностей) без трения.

Теория явления сверхтекучего гелия-II была разработана Л. Д. Ландау (Нобелевская премия по физике за 1962 год).

Вязкость гелия-II, измеряемая двумя экспериментами, сильно различается. Измерение скорости вытекания гелия-II из сосуда через узкую щель под действием силы тяжести, показывает очень малую вязкость (меньше 10−12 Па·с). Измерение времени затухания крутильных колебаний диска, погруженного в гелий-II, показывает вязкость, большую чем вязкость гелия-I (10−6 Па·с)[1].

Процесс теплопроводности у гелия-II существенно очень отличается от процесса теплопередачи нормальной жидкости — тепло проводится через гелий-II и при сколь угодно малой разности температур.[1]