Стабильность материи


Стабильность материи (стабильность вещества) — задача строгого доказательства того, что большое количество заряженных квантовых частиц может сосуществовать и образовывать макроскопические объекты, такие как обычная материя. Первое доказательство было предоставлено Фриманом Дайсоном и Эндрю Ленардом в 1967—1968 годах[1][2], но более короткое и более концептуальное доказательство было найдено позже Эллиоттом Либом и Уолтером Тиррингом в 1975 году[3].

В статистической механике существование макроскопических объектов обычно объясняется поведением энергии или свободной энергии по отношению к полному числу частиц. Точнее, они должены вести себя линейно в зависимости от для больших значений (термодинамическом пределе)[4]. В самом деле, если свободная энергия ведёт себя как для некоторых , то выливание двух стаканов воды даст энергию, пропорциональную , что представляет собой огромную величину для больших . Система называется устойчивой второго рода или термодинамически устойчивой, когда (свободная) энергия ограничена снизу линейной функцией от . Верхние границы обычно легко показать в приложениях, и поэтому люди больше работали над доказательством нижних оценок.

Пренебрегая другими силами, разумно предположить, что обычная материя состоит из отрицательных и положительных нерелятивистских зарядов (электронов и ядер), взаимодействующих исключительно посредством кулоновской силы. Конечное число таких частиц всегда коллапсирует в классической механике из-за бесконечной глубины электронно-ядерного притяжения, но может существовать в квантовой механике благодаря принципу неопределенности Гейзенберга. Доказательство того, что такая система термодинамически устойчива, называется проблемой стабильности материи, и это очень сложно доказать из-за большого радиуса действия кулоновского потенциала. Стабильность должна быть следствием эффектов экранирования, но их трудно измерить количественно.