Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Поверхность излома армированной волокном керамики, состоящей из волокон SiC и матрицы SiC. Волокна выдвижной механизм показан ключ к свойствам CMC.
Втулки вала CMC

Композиты с керамической матрицей ( КМК ) - это подгруппа композиционных материалов и подгруппа керамики . Они состоят из керамических волокон, встроенных в керамическую матрицу. Волокна и матрица могут состоять из любого керамического материала, при этом углеродные и углеродные волокна также могут рассматриваться как керамический материал.

Введение [ править ]

Мотивация для разработки КМЦ было преодоление проблем , связанных с традиционными технической керамики , как оксид алюминия , карбид кремния , нитрида алюминия , нитрида кремния или оксида циркония - они разрушения легко под действием механических или термо-механических нагрузок из - за трещин , инициированных мелких дефектов или царапин. Устойчивость к растрескиванию, как и у стекла, очень низкая. Для повышения трещиностойкости или вязкости разрушения частицы (так называемые монокристаллические усы или пластинки) были вложены в матрицу. Однако улучшение было ограниченным, и продукты нашли применение только в некоторых керамических режущих инструментах. До сих пор только интеграция длинных многожильных волокон резко увеличивала сопротивление растрескиванию, удлинение и термический удар.сопротивление и привело к появлению нескольких новых приложений. Армирующие элементы, используемые в композитах с керамической матрицей (CMC), служат для повышения вязкости разрушения комбинированной системы материалов, в то же время используя преимущества присущей керамической матрице высокой прочности и модуля Юнга. Наиболее распространенным вариантом армирования является керамическое волокно непрерывной длины с модулем упругости, который обычно несколько ниже, чем у матрицы. Функциональная роль этого волокна заключается в (1) увеличении напряжения CMC для продвижения микротрещин через матрицу, тем самым увеличивая энергию, расходуемую во время распространения трещины; а затем (2) когда трещины сквозной толщины начинают формироваться на КМЦ при более высоком напряжении (пропорциональное предельное напряжение, PLS), чтобы перекрыть эти трещины без разрушения,тем самым обеспечивая КМЦ высокий предел прочности на разрыв (UTS). Таким образом, армирующие керамические волокна не только увеличивают исходное сопротивление композитной структуры распространению трещин, но также позволяют CMC избежать резкого хрупкого разрушения, характерного для монолитной керамики. Это поведение отличается от поведения керамических волокон вкомпозиты с полимерной матрицей (PMC) и композиты с металлической матрицей (MMC), в которых волокна обычно ломаются раньше, чем матрица из-за более высокой способности этих матриц к деформации разрушения.

Углерод (C), специальный карбид кремния (SiC), оксид алюминия ( Al
2
О
3
) и муллита ( Al
2
О
3
-SiO
2
) волокна чаще всего используются для CMC. Материалы матрицы обычно одинаковые, то есть C, SiC, оксид алюминия и муллит. Недавно ультравысокотемпературная керамика (UHTC) была исследована в качестве керамической матрицы в новом классе CMC, так называемых сверхвысокотемпературных керамических матричных композитах (UHTCMC) или сверхвысокотемпературных керамических композитах (UHTCC). [1] [2] [3] [4]

Как правило, названия CMC включают комбинацию типа волокна / типа матрицы . Например, C / C означает углерод, армированный углеродным волокном ( углерод / углерод ), или C / SiC означает карбид кремния, армированный углеродным волокном. Иногда включается производственный процесс, и композит C / SiC, изготовленный методом инфильтрации жидкого полимера (LPI) (см. Ниже), сокращенно обозначается как LPI-C / SiC .

Важными коммерчески доступными КМЦ являются C / C, C / SiC, SiC / SiC и Al.
2
О
3
/ Al
2
О
3
. От обычной керамики они отличаются следующими свойствами, более подробно представленными ниже:

  • Относительное удлинение до разрыва до 1%
  • Сильно повышенная вязкость разрушения
  • Чрезвычайная стойкость к тепловому удару
  • Улучшенная динамическая нагрузка.
  • Анизотропные свойства после ориентации волокон

Производство [ править ]

Производственные процессы обычно состоят из следующих трех этапов:

  1. Укладка и фиксация волокон в форме желаемого компонента
  2. Инфильтрация матричного материала
  3. Окончательная обработка и, при необходимости, дополнительные обработки, такие как покрытие или пропитка внутренней пористости .

Первый и последний этапы почти одинаковы для всех CMC: на первом этапе волокна, часто называемые ровингами, укладываются и фиксируются с использованием методов, используемых в армированных волокнами пластиковых материалах, таких как наложение тканей , намотка нитей, плетение и завязывание узлов . Результат этой процедуры называется волокнистой преформой или просто преформой .

На втором этапе используются пять различных процедур для заполнения керамической матрицы между волокнами преформы:

  1. Осаждение из газовой смеси
  2. Пиролиз пре-керамического полимера
  3. Химическая реакция элементов
  4. Спекание при относительно низкой температуре в диапазоне 1000–1200 ° C (1830–2190 ° F)
  5. Электрофоретическое осаждение керамического порошка

Первый, второй и третий процедуры находят применение для неоксидных CMC, а четвертый - для оксидных CMC; также практикуются комбинации этих процедур. Пятая процедура еще не внедрена в производственных процессах. Все процедуры имеют подварианты, которые различаются техническими деталями. Все процедуры дают пористый материал.

Третий и последний этап обработки - шлифование , сверление , притирка или фрезерование - необходимо выполнять с помощью алмазных инструментов. КМЦ также можно обрабатывать водоструйной , лазерной или ультразвуковой обработкой .

Керамические волокна [ править ]

Микрофотография керамического композита SiC / SiC с тканой трехмерной волоконной структурой

Керамические волокна в КМЦ могут иметь поликристаллическую структуру, как и в обычной керамике. Они также могут быть аморфными или иметь неоднородный химический состав , который возникает при пиролизе органических предшественников . Высокие температуры процесса, необходимые для изготовления КМЦ, исключают использование органических, металлических или стеклянных волокон . Можно использовать только волокна, устойчивые при температурах выше 1000 ° C (1800 ° F), например волокна из оксида алюминия, муллита, SiC, диоксида циркония или углерода. Аморфные волокна SiC имеют способность к удлинению более 2%, что намного больше, чем у обычных керамических материалов (от 0,05 до 0,10%). [5]Причина этого свойства SiC-волокон заключается в том, что большинство из них содержат дополнительные элементы, такие как кислород , титан и / или алюминий, обеспечивающие предел прочности на разрыв выше 3 ГПа. Эти улучшенные эластичные свойства требуются для различных трехмерных расположений волокон (см. Пример на рисунке) в текстильном производстве, где необходим малый радиус изгиба. [6]

Производственные процедуры [ править ]

Осаждение матрицы из газовой фазы [ править ]

Химическое осаждение из паровой фазы (CVD) хорошо подходит для этой цели. При наличии волокнистой заготовки CVD имеет место между волокнами и их отдельными нитями и поэтому называется химической инфильтрацией паров (CVI). Одним из примеров является производство композитов C / C: преформа из C-волокна подвергается воздействию смеси аргона и углеводородного газа ( метан , пропан и т. Д.) При давлении около или ниже 100 кПа и температуре выше 1000 °. С. Газ разлагает углеродные отложения на волокнах и между ними. Другим примером является осаждение карбида кремния, который обычно провод т из смеси водорода и метил- трихлорсилана (МТС, CH
3
SiCl
3
; это также распространено в производстве силикона ). При определенных условиях эта газовая смесь откладывает мелкодисперсный и кристаллический карбид кремния на горячей поверхности внутри преформы. [7] [8]

Эта процедура CVI оставляет тело с пористостью около 10-15%, так как доступ реагентов внутрь преформы все больше блокируется отложениями на внешней стороне.

Формирование матрицы пиролизом C- и Si-содержащих полимеров [ править ]

Углеводородные полимеры сжимаются во время пиролиза , а при дегазации образуют углерод с аморфной стеклоподобной структурой, которая при дополнительной термообработке может быть изменена на более графитоподобную структуру. Другие специальные полимеры, известные как preceramic полимеров , где некоторые атомы углерода замещены атомами кремния, так называемые polycarbo силаны , выход аморфного карбида кремния более или менее стехиометрического состава. Большое разнообразие такого карбида кремния , кремний оксикарбида , карбонитрид кремния и оксинитридные кремниевых предшественники , уже существует и более preceramic полимеровдля изготовления керамики на основе полимеров . [9] Для изготовления материала CMC, волокнистая заготовка пропитывается выбранным полимером. Последующее отверждение и пиролиз дают высокопористую матрицу, что нежелательно для большинства применений. Дальнейшие циклы инфильтрации полимера и пиролиза выполняются до тех пор, пока не будет достигнуто окончательное и желаемое качество. Обычно требуется от пяти до восьми циклов. [10] [11] [12]

Этот процесс называется инфильтрацией жидкого полимера (LPI) или инфильтрацией и пиролизом полимера (PIP). Здесь также обычна пористость около 15% из-за усадки полимера. Пористость уменьшается после каждого цикла.

Формирование матрицы в результате химической реакции [ править ]

В этом методе один материал, расположенный между волокнами, вступает в реакцию со вторым материалом с образованием керамической матрицы. Некоторые обычные керамические изделия также производятся с помощью химических реакций . Например, реакционно-связанный нитрид кремния (RBSN) получают в результате реакции кремниевого порошка с азотом, а пористый углерод взаимодействует с кремнием с образованием реакционно-связанного карбида кремния , карбида кремния, который содержит включения фазы кремния. Примером производства КМЦ, которое было внедрено для производства керамических тормозных дисков , является реакция кремния с пористой преформой из C / C. [13] Температура процесса выше 1414 ° C (2577 ° F), что вышетемпература плавления кремния и условия процесса регулируются таким образом, чтобы углеродные волокна C / C-преформы почти полностью сохраняли свои механические свойства. Этот процесс называется инфильтрацией жидкого кремния (LSI). Иногда из-за того, что он начинается с C / C, материал обозначается как C / C-SiC . Материал, полученный в этом процессе, имеет очень низкую пористость, около 3%.

Формирование матрицы спеканием [ править ]

Этот процесс используется для производства материалов CMC с оксидным волокном / оксидной матрицей. Поскольку большинство керамических волокон не выдерживают нормальных температур спекания выше 1600 ° C (2910 ° F), для пропитки преформы оксидных волокон используются специальные жидкости- прекурсоры . Эти прекурсоры допускают спекание, то есть процессы керамикоформования, при температурах 1000–1200 ° C. Они представляют собой, например, на основе смесей оксида алюминия порошка с жидкостями , тетра-этил-орто силиката ( в качестве донора Si) и алюминий- бутилат (как Al донора), который дают муллита матрицу. Также используются другие методы, такие как химия золь-гель процесса . КМЦ, полученные с помощью этого процесса, обычно имеют высокую пористость около 20%. [14][15]

Матрица, сформированная с помощью электрофореза [ править ]

В процессе электрофоретики электрически заряженные частицы, диспергированные в специальной жидкости, переносятся посредством электрического поля в преформу, имеющую противоположную полярность электрического заряда. Этот процесс находится в стадии разработки и еще не используется в промышленных масштабах. [16] [17] Здесь также следует ожидать некоторой остаточной пористости.

Свойства [ править ]

Схема перемычек трещин в вершине трещины керамических композитов.

Механические свойства [ править ]

Основной механизм механических свойств [ править ]

Вышеупомянутая высокая вязкость разрушения или трещиностойкость является результатом следующего механизма: под нагрузкой керамическая матрица трескается, как и любой керамический материал, при удлинении около 0,05%. В CMC встроенные волокна перекрывают эти трещины (см. Рисунок). Этот механизм работает только тогда, когда матрица может скользить по волокнам, а это означает, что между волокнами и матрицей должна быть слабая связь. Для прочного соединения потребуется очень высокая способность к удлинению волокна, перекрывающего трещину, и это приведет к хрупкому разрушению, как и в случае с обычной керамикой. Производство материала КМЦ с высокой трещиностойкостью требует шага для ослабления этой связи между волокнами и матрицей. Это достигается путем нанесения на волокна тонкого слоя пиролитического углерода или нитрида бора, который ослабляет связь на границе раздела волокно / матрица.ведущий квытягивание волокна на поверхностях трещин, как показано на сканирующем электронном микроскопе в верхней части этой статьи. В оксидных КМЦ высокой пористости матрицы достаточно для установления слабой связи.

Свойства при растягивающих и изгибающих нагрузках, трещиностойкость [ править ]

Кривые измерения ударной вязкости различных керамических композитов и SiSiC [18]
Обозначения: SiSiC: обычный SiSiC , SiCSiC (CVI) и CSiC (CVI): SiC / SiC и C / SiC, изготовленные с помощью процессов CVI, CSiC (95) и CSiC (93 ): C / SiC, изготовленный методом LPI, Ox (PP): оксидно-керамический композит, CSiC (Si): C / SiC, изготовленный методом LSI.

Влияние и качество границы раздела волокон можно оценить по механическим свойствам. Измерения трещиностойкости проводились на образцах с надрезом (см. Рисунок) в ходе так называемых испытаний на изгиб с одной кромкой и надрезом (SENB). В механике разрушения измеренные данные (сила, геометрия и поверхность трещины) нормализуются для получения так называемого коэффициента интенсивности напряжения (КИН), K Ic . Из-за сложной поверхности трещины (см. Рисунок в верхней части этой статьи) реальная площадь поверхности трещины не может быть определена для материалов CMC. Поэтому измерения используют начальную выемку в качестве поверхности трещины, что дает формальный КИНпоказано на рисунке. Это требует одинаковой геометрии для сравнения разных образцов. Площадь под этими кривыми, таким образом, дает относительное указание энергии, необходимой для продвижения вершины трещины через образец (сила, умноженная на длину пути, дает энергию). Максимумы указывают на уровень нагрузки, необходимый для распространения трещины в образце. По сравнению с образцом обычной керамики SiSiC можно сделать два наблюдения:

  • Всем протестированным материалам CMC требуется на несколько порядков больше энергии для распространения трещины в материале.
  • Сила, необходимая для распространения трещин, варьируется в зависимости от типа CMC.

В таблице CVI, LPI и LSI обозначают процесс производства материала C / SiC. Данные по оксиду CMC и SiSiC взяты из паспортов производителя. Предел прочности SiSiC и Al
2
О
3
были рассчитаны на основе измерений относительного удлинения до разрушения и модуля Юнга , поскольку обычно для этой керамики доступны только данные о прочности на изгиб. В таблице приведены усредненные значения, возможны значительные различия даже в пределах одного производственного маршрута.

Кривая напряжения-деформации испытания на растяжение для CVI-SiC / SiC

Испытания на растяжение CMC обычно показывают нелинейные кривые напряжения-деформации, которые выглядят так, как будто материал деформируется пластически. Это называется квази- из пластика , так как эффект обусловлен микротрещин, которые образуются и мостиковых с увеличением нагрузки. Поскольку модуль Юнга несущих нагрузку волокон обычно ниже, чем у матрицы, наклон кривой уменьшается с увеличением нагрузки.

Кривые, полученные при испытаниях на изгиб, похожи на кривые измерений трещиностойкости, показанные выше.

Следующие характеристики важны для оценки данных на изгиб и растяжение CMC:

  • Материалы КМЦ с низким содержанием матрицы (вплоть до нуля) обладают высокой прочностью на разрыв (близкой к прочности волокна на разрыв), но низкой прочностью на изгиб .
  • Материалы КМЦ с низким содержанием волокна (вплоть до нуля) имеют высокую прочность на изгиб (близкую к прочности монолитной керамики), но не имеют удлинения более 0,05% при растягивающей нагрузке.

Основным критерием качества КМЦ является сопротивление растрескиванию или вязкость разрушения.

Прочие механические свойства [ править ]

Во многих компонентах CMC волокна расположены в виде 2-мерных (2D) сложенных друг на друга тканей полотняного или атласного переплетения . Таким образом, полученный материал является анизотропным или, точнее, ортотропным . Трещина между слоями не перекрывается волокнами. Следовательно, прочность на межслойный сдвиг (ILS) и прочность, перпендикулярная двумерной ориентации волокон, для этих материалов низки. При определенных механических нагрузках легко может произойти расслоение. Трехмерные волокнистые структуры могут улучшить эту ситуацию (см. Микрофотографию выше).

Эти сжимающие силы , показанные в таблице , ниже , чем у обычной керамики, где значения выше 2000 МПа являются общими; это результат пористости.

LCF-тест с контролем деформации для образца CVI-SiC / SiC

Композитная конструкция допускает высокие динамические нагрузки. В испытаниях на так называемую малоцикловую усталость (LCF) или многоцикловую усталость (HCF) материал испытывает циклические нагрузки при растягивающей и сжимающей (LCF) или только растягивающей (HCF) нагрузке. Чем выше начальное напряжение, тем короче срок службы и меньше циклов до разрушения. При начальной нагрузке 80% от прочности образец SiC / SiC выдержал около 8 миллионов циклов (см. Рисунок).

Коэффициент Пуассона показывает аномалию при измерении перпендикулярно плоскости ткани, поскольку межслойные трещины увеличивают толщину образца.

Тепловые и электрические свойства [ править ]

Тепловые и электрические свойства композита являются результатом его составляющих, а именно волокон, матрицы и пор, а также их состава. Ориентация волокон дает данные об анизотропии. Оксидные КМЦ являются очень хорошими электрическими изоляторами , а из-за их высокой пористости их теплоизоляция намного лучше, чем у обычной оксидной керамики.

Использование углеродных волокон увеличивает электрическую проводимость при условии, что волокна контактируют друг с другом и с источником напряжения. Матрица из карбида кремния является хорошим проводником тепла. В электрическом отношении это полупроводник , поэтому его сопротивление уменьшается с повышением температуры. По сравнению с (поли) кристаллическим SiC, волокна из аморфного SiC являются относительно плохими проводниками тепла и электричества.

Комментарии к таблице: (p) и (v) относятся к данным, параллельным и вертикальным ориентации волокна в структуре 2D-волокна, соответственно. Материал LSI имеет самую высокую теплопроводность из-за своей низкой пористости - преимущество при использовании его для тормозных дисков. Эти данные могут быть разбросаны в зависимости от деталей производственных процессов. [19]

Обычная керамика очень чувствительна к термическому напряжению из-за высокого модуля упругости и низкой способности к удлинению. Разница температур и низкая теплопроводность создают локально различные удлинения, которые вместе с высоким модулем Юнга создают высокие напряжения. Это приводит к трещинам, разрыву и хрупкому разрушению. В CMC волокна перекрывают трещины, и компоненты не имеют макроскопических повреждений, даже если матрица имеет локальные трещины. Применение КМК в тормозных дисках демонстрирует эффективность керамических композиционных материалов в условиях экстремальных термических ударов.

Коррозионные свойства [ править ]

Данных о коррозионных свойствах КМЦ мало, за исключением окисления при температурах выше 1000 ° C. Эти свойства определяются составляющими, а именно волокнами и матрицей. Керамические материалы в целом очень устойчивы к коррозии. Широкий спектр технологий производства с различными спекающими добавками, смесями, фазами стекла и пористостью имеет решающее значение для результатов коррозионных испытаний. Меньшее количество примесей и точная стехиометрия приводят к меньшей коррозии. Аморфные структуры и некерамические химикаты, часто используемые в качестве вспомогательных средств для спекания, являются отправными точками коррозионного воздействия. [20] [21]

Глинозем

Чистый оксид алюминия демонстрирует отличную коррозионную стойкость к большинству химикатов. Аморфные фазы стекла и кремнезема на границах зерен определяют скорость коррозии в концентрированных кислотах и щелочах и приводят к ползучести при высоких температурах. Эти характеристики ограничивают использование оксида алюминия. Для расплавленных металлов глинозем используется только с золотом и платиной.

Волокна глинозема

Эти волокна демонстрируют коррозионные свойства, аналогичные свойствам оксида алюминия, но имеющиеся в продаже волокна не очень чистые и поэтому менее стойкие. Из-за ползучести при температурах выше 1000 ° C оксидные КМЦ имеют лишь несколько применений.

Углерод

Наиболее значительная коррозия углерода происходит в присутствии кислорода при температуре выше 500 ° C (932 ° F). Он горит с образованием двуокиси углерода и / или окиси углерода . Он также окисляется сильными окислителями, такими как концентрированная азотная кислота . В расплавленных металлах он растворяется и образует карбиды металлов . Углеродные волокна по своим коррозионным свойствам не отличаются от углерода.

Карбид кремния

Чистый карбид кремния - один из самых устойчивых к коррозии материалов. Только сильные основания, кислород при температуре выше 800 ° C (1470 ° F) и расплавленные металлы вступают в реакцию с ним с образованием карбидов и силицидов . При реакции с кислородом образуется SiO
2
и CO
2
, при этом поверхностный слой SiO
2
замедляет последующее окисление ( пассивное окисление ). Температуры выше 1600 ° C (2910 ° F) и низкое парциальное давление кислорода приводят к так называемому активному окислению , при котором CO, CO
2
образуются газообразный SiO, вызывая быструю потерю SiC. Если матрица SiC производится не с помощью CVI, коррозионная стойкость не так хороша. Это следствие пористости в аморфном LPI и остаточного кремния в LSI-матрице.

Волокна карбида кремния

Волокна из карбида кремния производятся путем пиролиза органических полимеров, и поэтому их коррозионные свойства аналогичны свойствам карбида кремния, содержащегося в матрицах LPI. Таким образом, эти волокна более чувствительны к основанию и окислительным средам, чем чистый карбид кремния.

Приложения [ править ]

Материалы CMC преодолевают основные недостатки традиционной технической керамики, а именно хрупкое разрушение и низкую вязкость разрушения, а также ограниченную стойкость к тепловому удару. Следовательно, их применение находится в областях, требующих надежности при высоких температурах (за пределами возможностей металлов) и устойчивости к коррозии и износу. [22] К ним относятся:

  • Системы теплозащитного экрана для космических аппаратов , которые необходимы на этапе входа в атмосферу, когда имеют место высокие температуры, условия теплового удара и сильные вибрационные нагрузки.
  • Компоненты для высокотемпературных газовых турбин , таких как камеры сгорания , лопатки статора и лопатки турбин .
  • Компоненты для горелок , стабилизаторов пламени и каналов для горячего газа, в которых нашли свое применение оксидные КМЦ.
  • Тормозные диски и компоненты тормозной системы, которые подвергаются сильному тепловому удару (большему, чем бросание раскаленной части любого материала в воду).
  • Компоненты подшипников скольжения при высоких нагрузках, требующих высокой коррозионной и износостойкости.

В дополнение к вышесказанному, КМЦ могут использоваться в приложениях, в которых используется обычная керамика или металлические компоненты имеют ограниченный срок службы из-за коррозии или высоких температур.

Разработки для приложений в космосе [ править ]

Во время фазы возвращения космических аппаратов в атмосферу система теплозащитного экрана в течение нескольких минут подвергается воздействию температур выше 1500 ° C (2730 ° F). Только керамические материалы могут выдержать такие условия без значительных повреждений, а среди керамики только КМЦ могут адекватно выдерживать термические удары. Разработка систем теплозащитного экрана на основе КМЦ сулит следующие преимущества:

  • Уменьшенный вес
  • Повышенная несущая способность системы
  • Возможность повторного использования для нескольких повторных записей
  • Лучшее рулевое управление на этапе повторного входа в атмосферу с помощью закрылков CMC
НАСА-космический аппарат X-38 во время испытательного полета
Пара закрылков для NASA X-38. Размер: 1,5 × 1,5 × 0,15 м; масса: 68 кг каждый; различные компоненты крепятся с помощью более 400 винтов и гаек CVI-C / SiC.

В этих приложениях высокие температуры не позволяют использовать КМЦ с оксидным волокном, поскольку при ожидаемых нагрузках ползучесть будет слишком высокой. Волокна из аморфного карбида кремния теряют свою прочность из-за перекристаллизации при температурах выше 1250 ° C (2280 ° F). Поэтому углеродные волокна в матрице карбида кремния (C / SiC) используются в программах разработки для этих приложений. Европейская программа HERMES ESA , начатая в 1980-х годах и по финансовым причинам отмененная в 1992 году, дала первые результаты. Несколько последующих программ были сосредоточены на разработке, производстве и квалификации носовой части, передних кромок и закрылков для космического корабля NASA X-38 . [23] [24]

Эта программа развития квалифицировала использование болтов и гаек C / SiC [25] и несущей системы закрылков. Последние были испытаны на земле в DLR в Штутгарте, Германия, при ожидаемых условиях фазы входа в атмосферу: 1600 ° C (2910 ° F), нагрузка 4 тонны , парциальное давление кислорода, аналогичное условиям входа в атмосферу, и одновременное пеленание. движения четыре цикла в секунду. Всего было смоделировано пять фаз возвращения в атмосферу. [26] Кроме того, были разработаны и аттестованы системы защиты от окисления для предотвращения выгорания углеродных волокон. После установки закрылков НАСА успешно провело механические наземные испытания в Хьюстоне, штат Техас, США. Следующее испытание - реальное возвращение беспилотного автомобиля X-38 - было отменено по финансовым причинам. Один изКосмические челноки вывели бы аппарат на орбиту, откуда он вернулся бы на Землю.

Эти квалификации были многообещающими только для этого приложения. Нагрузка при высоких температурах длится всего около 20 минут на повторный вход, а для повторного использования будет достаточно всего около 30 циклов. Однако для промышленного применения в среде горячего газа требуется несколько сотен циклов тепловых нагрузок и до многих тысяч часов срока службы.

Intermediate ЭКСПЕРИМЕНТАЛЬНАЯ Автомобиль (IXV), проект , инициированный ЕКА в 2009 г. [27] является первой в Европе лифтинг тела боеголовка. IXV, разработанный Thales Alenia Space , должен совершить свой первый полет в 2014 году в рамках четвертой миссии Vega (VV04) над Гвинейским заливом. В его строительстве приняли участие более 40 европейских компаний. Система тепловой защиты нижней части транспортного средства, включающая носовую часть, переднюю кромку и нижнюю поверхность крыла, была разработана и изготовлена Гераклом [28] с использованием композитной керамической матрицы (CMC), углерод / карбид кремния (C / SiC). Эти компоненты будут действовать как тепловой экран транспортного средства во время его входа в атмосферу.[29]

Европейская комиссия финансирует исследовательский проект, C3HARME, под NMP-19-2015 зову рамочные программы по научным исследованиям и технологического развития (H2020) в 2016 году для проектирования, разработки, производства и тестирования нового класса Ultra-высоко- композиты с керамической матрицей (UHTCMC), армированные волокнами карбида кремния и углеродными волокнами, подходящие для применения в тяжелых аэрокосмических средах, таких как двигательные установки и системы тепловой защиты (TPS). [30]

Разработки компонентов газовых турбин [ править ]

Использование КМЦ в газовых турбинах позволяет повысить температуру на входе в турбину, что повышает эффективность двигателя. Из-за сложной формы лопаток статора и лопаток турбины разработка была в первую очередь сосредоточена на камере сгорания. В США камера сгорания из SiC / SiC со специальным SiC-волокном с повышенной устойчивостью к высоким температурам была успешно испытана в течение 15 000 часов. [31] Окисление SiC было существенно снижено за счет использования защитного покрытия от окисления, состоящего из нескольких слоев оксидов. [32]

В рамках сотрудничества General Electric и Rolls-Royce в области двигателей было изучено использование лопаток статора CMC в горячей секции турбовентиляторного двигателя F136 , двигателя, который не смог превзойти Pratt and Whitney F-135 для использования в Joint Strike Fighter . Совместное предприятие по производству двигателей CFM International использует КМЦ для производства кожухов турбин для высоких температур. [33] General Electric использует CMC в гильзах камеры сгорания, соплах и высокотемпературном кожухе турбины для своего будущего двигателя GE9X. [34]Детали из CMC также изучаются для стационарных применений как в холодных, так и в горячих частях двигателей, поскольку напряжения, возникающие во вращающихся частях, потребуют дополнительных усилий по развитию. Как правило, продолжается разработка CMC для использования в турбинах с целью уменьшения технических проблем и снижения затрат.

После 1,5 млрд долларов США инвестиций и 20 лет исследований и разработок к 2020 году GE Aviation планирует производить до 20 т (44 000 фунтов) препрега КМЦ и 10 т волокна из карбида кремния в год . Химическое осаждение из паровой фазы позволяет наносить покрытия на укладываемую волокнистую ленту в больших количествах, и GE удалось пропитать и отлить детали с очень высокой плотностью кремния, более 90% для сред с циклической усталостью , благодаря термической обработке. [35]

Экологические барьерные покрытия (EBC) для защиты компонентов газовой турбины

Защитные покрытия для защиты окружающей среды (EBC) создают барьер для CMC, чтобы уменьшить количество кислорода и других коррозионных веществ от диффузии через поверхность компонентов CMC.  

Требования к конструкции для EBC:

  • Относительный коэффициент согласования с компонентом CMC для снижения вероятности растрескивания
  • Низкая летучесть для минимизации коррозии / рецессии, вызванной устойчивостью
  • Устойчивость к попаданию расплавленных частиц внутрь
  • Возможность работы при высоких температурах
  • Фазовая стабильность при высоких температурах
  • Химическая совместимость с КМЦ и дополнительными слоями
  • Высокая твердость и прочность для защиты от повреждения посторонними предметами (FOD) и эрозии

Обычно при нанесении покрытия из EBC требуется связующее покрытие для обеспечения хорошей адгезии к компоненту CMC. НАСА разработало EBC на основе суспензии, которая начинается с покрытия на основе муллита перед нанесением дополнительных 2-3 слоев. [36] Для того, чтобы ЭВС активно защищали поверхность КМЦ, в суспензионное покрытие должны быть добавлены спекающие добавки, чтобы создать плотное покрытие, которое будет блокировать проникновение кислорода, газообразных и расплавленных отложений из двигателя. Спекание создает уплотненное покрытие и улучшает сцепление и характеристики покрытия.

В настоящее время проводятся исследования по борьбе с распространенными видами отказов, такими как расслоение, эрозия и растрескивание, вызванные паром или расплавленными отложениями. Расслоение и растрескивание из-за расплавленных отложений обычно вызываются реакцией с EBC, создающей неожиданную микроструктуру, ведущую к несоответствию CTE и низкой ударной вязкости в этой фазе. Деградация пара вызвана улетучиванием термически выращенного оксидного слоя между EBC и керамикой. Образующийся при этом пар приводит к быстрой рецессии SiC, то есть к деградации EBC. [37]   Успех EBC является непременным условием общего успеха компонентов CMC в газовом потоке турбины в реактивных двигателях.

Общие преимущества EBC:

  • Увеличивает срок службы компонентов CMC, обеспечивая общую экономию затрат при производстве реактивных двигателей.
  • Повышает стойкость к окислению компонентов CMC
  • Обеспечивает большую стойкость к окислению компонентов КМЦ, подверженных воздействию газообразных соединений из реактивного двигателя.

Применение оксидной КМЦ в горелках и каналах горячего газа [ править ]

Кислородсодержащий газ при температурах выше 1000 ° C (1800 ° F) вызывает коррозию металлических деталей и компонентов из карбида кремния. Такие компоненты, которые не подвергаются высоким механическим нагрузкам, могут быть изготовлены из оксидных КМЦ, которые могут выдерживать температуры до 1200 ° C (2190 ° F). Галерея ниже показывает держатель пламени из хлебцы пекарне как испытано после того, как в течение 15000 часов, которые впоследствии действовали в общей сложности более 20000 часов. [38]

Заслонки и вентиляторы, циркулирующие горячие кислородсодержащие газы, могут быть изготовлены в той же форме, что и их металлические эквиваленты. Срок службы этих оксидных компонентов КМК в несколько раз больше, чем у металлов, которые часто деформируются. Еще один пример - подъемная заслонка из оксидного КМЦ для печи для спекания, выдержавшая более 260 000 циклов открывания. [39]

Применение в тормозном диске [ править ]

Углерод / углерод (С / С) материалы нашли свой путь в дисковые тормоза на гоночных автомобилей и самолетов , и C / SiC тормозные диски , изготовленные в процессе БИС были квалифицированы и являются коммерчески доступными для автомобилей класса люкс . Преимущества этих дисков C / SiC:

  • Производители прогнозируют очень небольшой износ, что приведет к эксплуатации в течение всего срока службы автомобиля с нормальной нагрузкой 300 000 км (190 000 миль).
  • Нет замирание не испытывал, даже при высокой нагрузке.
  • Никакого влияния поверхностной влажности на коэффициент трения не проявляется, как в тормозных дисках C / C.
  • Коррозионная стойкость, например к дорожной соли, намного лучше, чем у металлических дисков.
  • Масса диска составляет всего 40% от металлического диска. Это приводит к уменьшению неподрессоренной и вращающейся массы.

Снижение веса улучшает реакцию амортизатора, комфорт при удержании на дороге, маневренность, экономию топлива и, следовательно, комфорт вождения. [40]

SiC-матрица БИС имеет очень низкую пористость, что хорошо защищает углеродные волокна. Тормозные диски не подвергаются воздействию температуры выше 500 ° C (932 ° F) более нескольких часов в течение своего срока службы. Таким образом, окисление не является проблемой для данного приложения. Снижение производственных затрат определит успех этого приложения для автомобилей среднего класса.

Применение в подшипниках скольжения [ править ]

Компоненты керамического подшипника скольжения; На рисунке показан спеченный SiC-подшипник для гидростатического подшипника скольжения и втулка вала из CVI-SiC / SiC, запрессованная с помощью горячей посадки на металл, система, испытанная с использованием жидкого кислорода в качестве смазки.

Обычный SiC, а иногда и менее дорогой SiSiC , успешно используются более 25 лет в подшипниках скольжения или скольжения насосов . [41] Перекачиваемая жидкость сама по себе обеспечивает смазку подшипника. Очень хорошая коррозионная стойкость практически ко всем видам сред, очень низкий износ и низкие коэффициенты тренияявляются основой этого успеха. Эти подшипники состоят из неподвижного подшипника, запрессованного в металлическую оболочку, и вращающейся втулки вала, установленной на валу. Под сжимающим напряжением керамический статический подшипник имеет низкий риск выхода из строя, но втулка вала из карбида кремния не имеет такой ситуации и, следовательно, должна иметь большую толщину стенки и / или иметь специальную конструкцию. В больших насосах с валами диаметром 100–350 мм (3,9–13,8 дюйма) риск отказа выше из-за меняющихся требований к производительности насоса - например, изменения нагрузки во время работы. Внедрение SiC / SiC в качестве материала втулки вала оказалось очень успешным. Эксперименты на испытательном стенде показали почти тройную удельную нагрузочную способность подшипниковой системы с втулкой вала из SiC / SiC, спеченным SiC в качестве статического подшипника,и воду при 80 ° C (176 ° F) в качестве смазки.[42] Удельная грузоподъемность подшипника обычно выражается в Вт / мм 2 и рассчитывается как произведение нагрузки (МПа), поверхностной скорости подшипника (м / с) и коэффициента трения; он равен потере мощности подшипниковой системы из-за трения.

Этот подшипник скольжения концепция, а именно : SiC / SiC втулка вала и SiC , подшипник, был использован с 1994 года в таких приложениях, как в котле питательных насосов от электростанций , [42] , которое насос несколько тысяч кубических метров горячей воды до уровня 2000 м (6600 футов), а также в насосах с трубчатым корпусом [43] для гидротехнических сооружений или опреснительных установок морской воды , перекачивающих до 40 000 м 3 (1,400 000 куб. футов) до уровня около 20 м (66 футов).

Эта система подшипников была испытана в насосах для жидкого кислорода , например в кислородных турбонасосах тяговых двигателей космических ракет, со следующими результатами. SiC и SiC / SiC совместимы с жидким кислородом. При испытании на самовоспламенение в соответствии с французским стандартом NF 28-763 самовоспламенение не наблюдалось для порошкового SiC / SiC в чистом кислороде под давлением 20 бар при температурах до 525 ° C (977 ° F). Испытания показали, что коэффициент трения составляет половину, а износ составляет одну пятидесятую часть стандартных металлов, используемых в этой среде. [44] Система гидростатических подшипников (см. Рисунок) выдержала несколько часов при скорости до 10 000 оборотов в минуту, различных нагрузках и 50 циклах переходных процессов пуска / останова без каких-либо значительных следов износа.[45]

Другие приложения и разработки [ править ]

  • Закрылки управления тягой для военных реактивных двигателей [46]
  • Компоненты для реакторов синтеза и деления [47]
  • Системы трения для различного применения [48]
  • Ядерные приложения [49]
  • термообработка, высокая температура, приспособления для пайки [50] [51] [52] [53]

Ссылки [ править ]

  1. ^ Zoli, L .; Скити, Д. (2017). «Эффективность матрицы ZrB 2 –SiC в защите волокон C от окисления в новых материалах UHTCMC» . Материалы и дизайн . 113 : 207–213. DOI : 10.1016 / j.matdes.2016.09.104 .
  2. ^ Zoli, L .; Винчи, А .; Silvestroni, L .; Sciti, D .; Рис, М .; Грассо, С. (2017). «Быстрое искровое плазменное спекание для получения плотных сверхвысоких температурных волокон, армированных неповрежденными углеродными волокнами» . Материалы и дизайн . 130 : 1–7. DOI : 10.1016 / j.matdes.2017.05.029 .
  3. ^ Галиция, Пьетро; Фаилла, Симона; Золи, Лука; Скити, Дилетта (2018). «Прочные C f / ZrB 2 UHTCMC на основе салями, полученные методом электрофоретического осаждения» . Журнал Европейского керамического общества . 38 (2): 403–409. DOI : 10.1016 / j.jeurceramsoc.2017.09.047 .
  4. ^ Винчи, Антонио; Золи, Лука; Скити, Дилетта; Меландри, Чезаре; Гвиччарди, Стефано (2018). «Понимание механических свойств новых UHTCMC через случайный лес и анализ дерева регрессии» . Материалы и дизайн . 145 : 97–107. DOI : 10.1016 / j.matdes.2018.02.061 .
  5. ^ TR Cooke (1991). «Неорганические волокна - обзор литературы». Журнал Американского керамического общества . 74 (12): 2959–2978. DOI : 10.1111 / j.1151-2916.1991.tb04289.x .
  6. ^ К. Кумагава; Х. Ямаока; М. Шибуйса; Т. Имамура (1998). Изготовление и механические свойства нового улучшенного волокна Si-MC- (O) Tyranno . Керамическая инженерия и научные труды . 19А . С. 65–72. DOI : 10.1002 / 9780470294482.ch8 . ISBN 9780470294482.
  7. ^ Р. Наслен; Ф. Лангле; Р. Федоу (1989). «CVI-обработка керамических матричных композитов» . Journal de Physique Colloques . 50 : C191 – C207. DOI : 10,1051 / jphyscol: 1989526 .
  8. ^ KJ Probst; ТМ Бесман; Д. П. Стинтон; Р. А. Лоуден; T. JK. Андерсон; Т.Л. Старр (1999). «Последние достижения в области CVI с принудительным потоком и температурным градиентом для огнеупорных композитов». Технология поверхностей и покрытий . 120–121: 250–258. CiteSeerX 10.1.1.534.1288 . DOI : 10.1016 / S0257-8972 (99) 00459-4 . 
  9. ^ Ван X. et al. Аддитивное производство керамики из прекерамических полимеров: универсальный стереолитографический подход с использованием тиол-еновой щелочной химии, Аддитивное производство 2019, том 27, страницы 80-90
  10. ^ Г. Циглер; И. Рихтер; Д. Суттор (1999). «Армированные волокном композиты с полимерной матрицей: обработка, формирование матрицы и свойства». Композиты Часть A: Прикладная наука и производство . 30 (4): 411–417. DOI : 10.1016 / S1359-835X (98) 00128-6 .
  11. ^ М. Котани; Y. Katoh; А. Хяма (2003). «Изготовление и стойкость к окислению композитов SiC / SiC на основе аллилгидридополикарбосилана» . Журнал Керамического общества Японии . 111 (1293): 300–307. DOI : 10,2109 / jcersj.111.300 .
  12. ^ RM Rocha; CAA Cairo; MLA Graca (2006). «Формирование композитов с керамической матрицей, армированной углеродным волокном, с матрицей на основе плизилоксана / кремния». Материалы Наука и техника: A . 437 (2): 268–273. DOI : 10.1016 / j.msea.2006.08.102 .
  13. Перейти ↑ W. Krenkel (2008). «Экономически эффективная обработка композитов CMC путем пропитывания расплава (LSI-процесс)». 25-я ежегодная конференция по композитам, современной керамике, материалам и конструкциям: A: Керамическая инженерия и научные материалы, том 22, выпуск 3 . Керамическая инженерия и научные труды . 22 . п. глава 52. doi : 10.1002 / 9780470294680.ch52 . ISBN 9780470294680.
  14. Перейти ↑ RA Simon (2005). «Прогресс в переработке и производительности пористых оксидно-оксидных композитов». Международный журнал прикладных керамических технологий . 2 (2): 141–149. DOI : 10.1111 / j.1744-7402.2005.02016.x .
  15. ^ В. Pritzkow (2001). «Оценка хвостовиков CFCC после полевых испытаний в газовой турбине - III». Том 4: Turbo Expo 2002, части A и B . п. 681. DOI : 10,1115 / GT2002-30585 . ISBN 978-0-7918-3609-5.
  16. ^ Э. Штолль; П. Мар; Х. Г. Крюгер; Х. Керн; Р. Боккаччини (2005). «Прогресс в технике электрофоретического осаждения для пропитки оксидных волоконных матов для изготовления композитов с керамической матрицей». Ключевые инженерные материалы . 314 : 195–200. DOI : 10,4028 / www.scientific.net / KEM.314.195 . S2CID 136773861 . 
  17. Ю. Бао; П.С. Николсон; Ф. Зок (2007). "Электрофоретическое инфильтрационное осаждение при постоянном токе керамических композитов, армированных волокном". Журнал Американского керамического общества . 90 (4): 1063–1070. DOI : 10.1111 / j.1551-2916.2007.01504.x .
  18. ^ М. Кунц, Керамические матричные композиты , cfi / Bericht der DKG, vol. 49, No. 1, 1992, p. 18
  19. ^ http://www.ijirst.org/articles/IJIRSTV1I6121.pdf
  20. F. Schröder (ed.): Справочник Гмелина по неорганической химии, 8-е издание, Кремний, доп. т. B3, Карбид кремния, Часть 2 , Springer Verlag, 1986, стр. 322–397.
  21. ^ В.А. Лавренко: Коррозия высокопроизводительной керамики , Springer-Verlag, 1992 ISBN 3-540-55316-9 
  22. ^ F. Ретера (2013). «Композиты с керамической матрицей - альтернатива для сложных строительных задач» (PDF) . Керамические аппликации . Фраунгофера-Центр высокотемпературных материалов и дизайна HTL (1): 45–49.
  23. ^ Х. Пфайффер: Керамическая крышка корпуса для X-38 и CRV . 2-й Международный симпозиум по возвращающимся в атмосферу аппаратам и системам, Аркашон, Франция, март 2001 г.
  24. ^ Х. Пфайффер, К. Питц: Цельнокерамический откидной борт, пригодный для космического полета на X-38 . 53-й Международный астронавтический конгресс, Хьюстон, Техас, США, октябрь 2002 г., документ IAF-02-I.6.b.01
  25. ^ Х. Ланге, М. Догильи, М. Бикель: Керамические крепежные изделия для применения при высоких температурах . 5-я Международная конференция по соединению: керамика, стекло и металл, Йена, май 1997 г., DVS-Berichte Band 184, Deutscher Verlag für Schweißtechnik, стр. 55, ISBN 3-87155-489-8 
  26. ^ М. Догильи, Х. Вейс, К. Вильденроттер, Х. Ланге: Новый высокотемпературный керамический подшипник для космических аппаратов . 51-й Международный астронавтический конгресс, Рио-де-Жанейро, Бразилия, октябрь 2000 г., документ IAF-00-I.3.04.
  27. ^ «Деятельность ЕКА в 2014 году, интересная для СМИ» .
  28. ^ "Safran" .
  29. ^ "Термический букет в составе композитной керамической матрицы для создания атмосферы" . 20 марта 2014 г.
  30. ^ "C³harme" .
  31. ^ Н. Мирияла; Дж. Киммел; Дж. Прайс; Х. Итон; Г. Линси; Э. Сан (2002). «Оценка хвостовиков CFCC после полевых испытаний в газовой турбине - III» (PDF) . Том 4: Turbo Expo 2002, части A и B . С. 109–118. DOI : 10.1115 / GT2002-30585 . ISBN  978-0-7918-3609-5. Архивировано из оригинального (PDF) 25 сентября 2012 года . Проверено 1 июля 2011 года .
  32. ^ KL Подробнее; П.Ф. Торторелли; LR Walker; JB Kimmel; Н. Мирияла; JR Price; HE Eaton; EY Sun; Г. Д. Линси (2002). «Оценка защитных покрытий на керамических матричных композитах после воздействия двигателя и лаборатории» (PDF) . Том 4: Turbo Expo 2002, части A и B . С. 155–162. DOI : 10.1115 / GT2002-30630 . ISBN  978-0-7918-3609-5. Архивировано из оригинального (PDF) 25 сентября 2012 года . Проверено 1 июля 2011 года .
  33. Норрис, Гай, Hot blades, Aviation Week & Space Technology, 27 апреля - 10 мая 2015 г., стр. 55
  34. Стивен Тримбл (30 мая 2017 г.). «Спустя шесть лет двигатель 777X начинает сертификационные испытания» . Flightglobal .
  35. Гай Норрис (9 октября 2018 г.). «GE9X для Boeing 777X доставлен для окончательной сертификации испытательного стенда» . Авиационная неделя и космические технологии .
  36. ^ «Детали патента» . technology.nasa.gov . Проверено 4 декабря 2020 .
  37. ^ Padture, Нитин П. (2019-03-15). «Экологическая деградация высокотемпературных защитных покрытий для керамико-матричных композитов в газотурбинных двигателях» . NPJ Деградация материалов . 3 (1): 1–6. DOI : 10.1038 / s41529-019-0075-4 . ISSN 2397-2106 . 
  38. ^ WEC Pritzkow: Keramikblech, Эйн Werkstoff für höchste Ansprüche . cfi Sonderausgabe zum DKG-DGM Symposium Hochleistungskeramik 2005, W. Krenkel (Ed.), ISSN 0173-9913 , p. 40 
  39. ^ WEC Pritzkow: Керамика, армированная оксидным волокном . cfi / Ber. DKG 85 (2008) № 12, стр.E1
  40. ^ В. Кренкель, Р. Ренц, CMC для приложений трения , в композитах с керамической матрицей, редактор W. Krenkel, Wiley-VCH, 2008. ISBN 978-3-527-31361-7 , стр. 396 
  41. ^ WJ Барц (ред.): Keramiklager, Werkstoffe - Gleit- унд WÄLZLAGER - Dichtungen . Handbuch der Tribologie und Schmierungstechnik. Vol. 12. Эксперт Verlag, Renningen 2003. ISBN 3-8169-2050-0 
  42. ^ a b К. Гаффал, А.-К. Usbeck, W. Prechtl: Neue Werkstoffe ermöglichen, инновационный Pumpenkonzepte für die Speisewasserförderung в Кесселанлагене . VDI-Berichte Nr. 1331, VDI-Verlag, Дюссельдорф, 1997, стр. 275
  43. ^ В. Кохановский, П. Тиллак: Новые материалы подшипников насоса предотвращают повреждение насосов с трубчатым корпусом . VDI-Berichte Nr. 1421, VDI-Verlag, Дюссельдорф, 1998, стр. 227
  44. ^ ДЛ Bozet, М. Nelis, М. Leuchs, М. Бикель: трибологии в жидком кислороде из SiC / SiC композитов с керамической матрицей в связи с проектированием гидростатических подшипников . Материалы 9-го Европейского симпозиума по космическим механизмам и трибологии (ESMAT), Льеж, Бельгия, сентябрь 2001 г., документ ESA SP-480, стр. 35 год
  45. ^ М. Бикель, М. Лейкс, Х. Ланге, М. Нелис, Дж. Л. Бозет: Керамические опорные подшипники в криогенных турбонасосах. 4-я Международная конференция по ракетным технологиям - Жидкостное движение космических ракет-носителей, Льеж, Бельгия, декабрь 2002 г., доклад № 129.
  46. ^ П. Буллон; Г. Хабару; ПК Spriet; JL Lecordix; GC Ojard; Г. Д. Линси; Д. Т. Фейндел (2002). Том 4: Turbo Expo 2002, части A и B . С. 15–21. DOI : 10.1115 / GT2002-30458 . ISBN 978-0-7918-3609-5.
  47. ^ Б. Риккарди; Л. Джанкарли; А. Хасегава; Y. Katoh; А. Кохьяма; Р. Х. Джонс; Л.Л. Снид (2004). «Проблемы и достижения в разработке композитов SiC f / SiC для термоядерных реакторов». Журнал ядерных материалов . 329–333: 56–65. Bibcode : 2004JNuM..329 ... 56R . дои : 10.1016 / j.jnucmat.2004.04.002 .
  48. ^ В. Кренкель (ред.): Керамические матричные композиты . Wiley-VCH, Weinheim 2008. ISBN 978-3-527-31361-7 , стр. 38 
  49. ^ Н.П. Бансал, Дж. Ламон (редактор): "Композиты с керамической матрицей: материалы, моделирование и технология". Вили, Хобокен, Нью-Джерси, 2015. ISBN 978-1-118-23116-6 , стр. 609 
  50. J. Demmel, J. Esch (ed.): "Handhabungs-Roboter sorgt für Wettbewerbsvorsprung. Härterei: Symbiose von neuen Werkstoffen und Automatisierung". Продукт 35 (1996), №16, стр. 9. ISSN 0032-9967 
  51. ^ Дж. Деммель, Д. Майер, Э. Мюллер. Werkstoffwissenschaftliche Aspekte der Entwicklung neuartiger Werkstückträger für Hochtemperaturprozesse aus Faserverbundkeramik C / C und weiteren Hochtemperaturwerkstoffen. Штутгарт: Fraunhofer IRB Verlag, 1997, стр. 259. ISBN 3-8167-6257-3 
  52. ^ J. Demmel (ред.): CFC revolutioniert умереть Werkstückträger в дер Wärmebehandlung. Härterei-Technische Mitteilungen: HTM 53 (1998), № 5, S.293. ISSN 0017-6583 
  53. ^ J. Demmel, U. Nägele (ed.): "CFC. Идеальный материал для новых приспособлений для термообработки". Европейская углеродная конференция 1998. Наука и технология углерода. Том 2. Страсбург. стр. 741-742

Дальнейшее чтение [ править ]

  • Kriegesmann, J., ed. (2005). DKG Technische Keramische Werkstoffe . Эллерау: HvB-Verlag. ISBN 978-3-938595-00-8.
  • Кренкель, В., изд. (2008). Керамические матричные композиты . Вайнхайм: Wiley-VCH. ISBN 978-3-527-31361-7.
  • Бансал, Н.П., изд. (2005). Справочник по керамическим композитам . Бостон: Клувер. ISBN 1-4020-8133-2.
  • Бансал, Н. П. и Ламон, Дж., Ред. (2015). Керамические матричные композиты: материалы, моделирование, технология . Хобокен: Вайли. ISBN 978-1-118-23116-6.