From Wikipedia, the free encyclopedia
  (Redirected from List of Snapdragon devices)
Jump to navigationJump to search

This is a list of Qualcomm Snapdragon processors. Snapdragon is a family of mobile system on a chip (SoC) made by Qualcomm for use in smartphones, tablets, laptops, 2-in-1 PCs, smartwatches, and smartbooks devices.

Before Snapdragon[edit]

SOC was made by Qualcomm before it was renamed to Snapdragon.[1]

Snapdragon S1[edit]

Snapdragon S1 notable features over its predecessor (MSM7xxx):

  • CPU feature
    • 1 cores up to 1 GHz Scorpion or Cortex-A5 or ARM11
    • Up to 256K L2
    • Up to 32K+32K L1
  • GPU features
    • Adreno 200 (From Software rendered or Adreno 130)
      • OpenGL ES 1.1
      • OpenVG 1.0
      • Direct3D Mobile
      • Unified shader model 5-way VLIW
  • DSP features
    • Hexagon QDSP5 at 350 MHz or Hexagon QDSP6 600 MHz
  • ISP features
    • Up to 12 MP camera
  • Modem and Wireless features
    • External Bluetooth 4.0 or external Bluetooth 2.0/2.1 on some models
  • 45 or 65 nm manufacturing technology[7]

Snapdragon S2[edit]

Snapdragon S2 notable features over its predecessor (Snapdragon S1):

  • CPU feature
    • 1 cores up to 1.5 GHz Scorpion
    • ARMv7 (From ARMv6 on some model)
    • Up to 384K L2
  • GPU features
    • Adreno 205 (From Software rendered or Adreno 200)
      • Up to 266 MHz
      • Up to 2 time faster than Adreno 200[11]
      • Up to x2 relative performance on OpenGL ES 2.0 from Adreno 200[12]
      • Up to XGA
      • OpenGL ES 2.0
      • SVGT 1.2[13]
      • OpenVG 1.1
      • Direct Draw
      • GDI
      • Concurrent CPU, DSP, graphics and MDP[13]
  • Memory features
    • Up to LPDDR2 32 bit Dual-channel 333 MHz (5.3 GB/s)
  • DSP features
    • Hexagon QDSP5 at 256 MHz
  • ISP features
    • Up to 12 MP camera
  • Modem and Wireless features
    • External Bluetooth 4.0 (From Bluetooth 2.0/2.1 on some models)
  • 45 nm manufacturing technology
  • 904 pins[14]

Snapdragon S3[edit]

Snapdragon S3 notable features over its predecessor (Snapdragon S2):

  • CPU feature
    • 2 cores up to 1.7 GHz Scorpion
    • 512KB L2
  • GPU features
    • Adreno 220
      • Up to 4 time faster than Adreno 200[17]
      • Up to x5 relative performance on OpenGL ES 2.0 from Adreno 200[12]
      • EGL 1.3 (From 1.2)[13]
      • 2x Larger L2 cache (512 KB from 256 KB)
      • Up to WXGA+
  • DSP features
    • Hexagon QDSP6 at 400 MHz (From Hexagon QDSP5 at 256 MHz)
  • ISP features
    • Up to 16 MP camera (From 12 MP)
  • 45 nm manufacturing technology

Snapdragon S4 series[edit]

Snapdragon S4 is offered in three models; S4 Play for budget and entry-level devices, S4 Plus for mid-range devices and S4 Pro for high-end devices.[19] It was launched in 2012.

The Snapdragon S4 were succeeded by Snapdragon 200/400 series (S4 Play) and 600/800 series (S4 Plus and S4 Pro)

Snapdragon S4 Play[edit]

Snapdragon S4 Plus[edit]

Snapdragon S4 plus notable features over its predecessor (Snapdragon S3):

  • CPU features
    • 2 cores up to 1.7 GHz Krait 200
    • 4+4 KB L0, 16+16 KB L1, 1 MB L2
    • Out of Order Execution (From Partial Out of Order Execution on Scorpion)
  • GPU features
    • Adreno 225
      • Up to 1080p screen
      • Up to 6 time faster than Adreno 200[17]
      • Up to 32 ALU
      • Direct3D feature level 9.0 (From 9.0)[20]
      • Up to x7.5 relative performance on OpenGL ES 2.0 from Adreno 200[12]
    • Adreno 305
      • Up to 1080p screen (on 400 MHz)
      • Up to 720p screen (on 320 MHz)
      • Up to 24 ALU (From 32 on S3)
      • Unified shader model Scalar instruction set (From Unified shader model 5-way VLIW)
      • Up to x8 relative performance on OpenGL ES 2.0 from Adreno 200[12]
  • DSP features
    • Up to 20 MP or 13.5 MP camera
  • ISP features
    • Hexagon QDSP6
  • Modem and Wireless features
    • Integrated Bluetooth 4.0
    • IZat Gen8A (From IZat Gen 7)[21]
  • 28 nm manufacturing technology

Snapdragon S4 Pro and Snapdragon S4 Prime (2012)[edit]

Snapdragon S4 Pro notable features over its predecessor (Snapdragon S4 Play):

  • CPU features
    • up to 2 cores up to 1.7 GHz Krait 300 on to Snapdragon S4 Pro
    • up to 4 cores up to 1.5 GHz Krait 300 on to Snapdragon S4 Prime
    • 4+4 KB L0, 16+16 KB L1, 1 MB L2
  • GPU features
    • Adreno 320
      • Support OpenGL ES 3.0
      • Up to 1080p screen
      • Up to 64 ALU (From 32 on S4 plus)
      • Up to x23 relative performance on OpenGL ES 2.0 from Adreno 200[12]
  • DSP features
    • Hexagon QDSP6
  • ISP features
    • Up to 20 MP camera
  • Modem and Wireless features
    • LTE FDD/TDD Cat 3 or external on some models
  • 28 nm LP manufacturing technology
  • 4 watt TDP[23]
  • Up to eMMC 4.4/4.4.1

Snapdragon 2 Series[edit]

The Snapdragon 2 series is the entry-level SoC designed for low-end or ultra-budget smartphones. It replaces the MSM8225 S4 Play model as the lowest-end SoC in the entire Snapdragon lineup.

Snapdragon 200 (2013)[edit]

Qualcomm 205, Snapdragon 208, 210 and 212 (2014–17)[edit]

The Snapdragon 208 and Snapdragon 210 were announced on September 9, 2014.[29]
The Snapdragon 212 was announced on July 28, 2015.[30]
The Qualcomm 205 Mobile Platform formally falls under the Mobile Platform brand, but is practically a Snapdragon 208 with a X5 LTE modem. It was announced March 20, 2017.[31]

Qualcomm 215 (2019)[edit]

The Qualcomm 215 was announced on July 9, 2019.[36] It is a toned-down variant of the Snapdragon 425 and primarily optimized for Android Go Edition devices.

Snapdragon 4 Series[edit]

The Snapdragon 4 Series is the entry-level SoC designed for the more upmarket entry-level segment, as opposed to the 2 Series, which were aimed at ultra-budget segment. Similar to the 2 Series, it is the successor of the S4 Play.

Snapdragon 400 (2013)[edit]

Snapdragon 410, 412 and 415 (2014/15)[edit]

The Snapdragon 410 was announced on December 9, 2013.[39] It was Qualcomm's first 64-bit mobile system on a chip and first manufactured in China by SMIC.[40]
The Snapdragon 412 was announced on July 28, 2015.[30]
The Snapdragon 415 and the older Snapdragon 425 (later cancelled) were announced on February 18, 2015.[41]

Snapdragon 425, 427, 430 and 435 (2015/16)[edit]

Snapdragon 425, 427, 430 and 435 are pin and software compatible; software compatible with Snapdragon 429, 439, 450, 625, 626 and 632.
The Snapdragon 430 was announced on September 15, 2015.[45]
The new Snapdragon 425 and Snapdragon 435 were announced on February 11, 2016.[46]
The Snapdragon 427 was announced on October 18, 2016.[47][48]

Snapdragon 429, 439 and 450 (2017/18)[edit]

The Snapdragon 450 was announced on June 28, 2017.[53] Pin and software compatible with Snapdragon 625, 626 and 632; software compatible with Snapdragon 425, 427, 429, 430, 435 and 439.
The Snapdragon 429 and 439 were announced on June 26, 2018.[54] Snapdragon 429 and 439 pin and software compatibility; software compatible with Snapdragon 425, 427, 430, 435, 450, 625, 626 and 632.

Snapdragon 460 (2020)[edit]

The Snapdragon 460 was announced on January 20, 2020 with NavIC support. It is the first Snapdragon 400 model to incorporate the Kryo architecture.[59]

Snapdragon 480 5G (2021)[edit]

The Snapdragon 480 was announced on January 4, 2021, and is the first SoC in the Snapdragon 4-Series by Qualcomm to support 5G Connectivity.[61]

Snapdragon 6 Series[edit]

The Snapdragon 6 Series is the mid-range SoC primarily targeted at both the entry-level and mid-range segments, succeeding the S4 Plus. It is the most commonly used Snapdragon lineup, appearing in mainstream devices of various manufacturers.

Snapdragon 600 (2013)[edit]

The Snapdragon 600 was announced on January 8, 2013.[63] Unlike the later models of the 600 series, Snapdragon 600 was considered a high-end SoC similar to the Snapdragon 800, and was the direct successor of both the Snapdragon S4 Plus and S4 Pro.

  • Display Controller: MDP 4. 2 RGB planes, 2 VIG planes, 1080p

Snapdragon 610, 615 and 616 (2014/15)[edit]

The Snapdragon 610 and Snapdragon 615 were announced on February 24, 2014.[65] The Snapdragon 615 was Qualcomm's first octa-core SoC. Starting with the Snapdragon 610, the 600 series is a mid-range SoC lineup, as opposed to the original Snapdragon 600, which was a high-end model.

  • Hardware HEVC/H.265 decode acceleration[66]

The Snapdragon 616 was announced on July 31, 2015.[67]

Snapdragon 617, 625 and 626 (2015/16)[edit]

The Snapdragon 617 was announced on September 15, 2015.[45]
The Snapdragon 625 was announced on February 11, 2016.[71]
The Snapdragon 626 was announced on October 18, 2016.[72] Snapdragon 625, 626, 632 and 450 are pin and software compatible; software compatible with Snapdragon 425, 427, 429, 430, 435 and 439.

Snapdragon 650 (618), 652 (620) and 653 (2015/16)[edit]

The Snapdragon 618 and Snapdragon 620 were announced on February 18, 2015.[41] They have been since renamed as Snapdragon 650 and Snapdragon 652 respectively.[76]
The Snapdragon 653 was announced on October 18, 2016.[47][48]

Snapdragon 630, 636 and 660 (2017)[edit]

Snapdragon 630, 636 and 660 are pin and software compatible.
The Snapdragon 630 and Snapdragon 660 were announced on May 8, 2017. [80]
The Snapdragon 636 was announced on October 17, 2017.[81]

Snapdragon 632 and 670 (2018)[edit]

The Snapdragon 632 was announced on June 26, 2018.[54] Pin and software compatible with Snapdragon 625, 626 and 450; software compatible with Snapdragon 425, 427, 429, 430, 435 and 439.
The Snapdragon 670 was announced on August 8, 2018.[88] Pin and software compatible with Snapdragon 710.

Snapdragon 662, 665, 675 and 678 (2019/20)[edit]

The Snapdragon 675 was announced on October 22, 2018.[92]
The Snapdragon 665 was announced on April 9, 2019.[93][94]
The Snapdragon 662 was announced on January 20, 2020 with NavIC Support.[59]
The Snapdragon 678 was announced on December 15, 2020.[95]

Snapdragon 690 5G (2020)[edit]

The Snapdragon 690 was announced on June 16, 2020, and is the first midrange SoC by Qualcomm to support 5G Connectivity.[101]

Snapdragon 7 Series[edit]

On February 27, 2018, Qualcomm Introduced the Snapdragon 7 Mobile Platform Series. It is an upper mid-range SoC designed to bridge the gap between the 6 series and the 8 series, and primarily aimed at premium mid-range segment.[103]

Snapdragon 710 and 712 (2018/19)[edit]

The Snapdragon 710 was announced on May 23, 2018.[104] Pin and software compatible with Snapdragon 670.
The Snapdragon 712 was announced on February 6, 2019.[105]

Snapdragon 720G/730/730G/732G (2019/20)[edit]

The Snapdragon 730 and 730G were announced on April 9, 2019.[93][109]
The Snapdragon 720G was announced on January 20, 2020.[59]
The Snapdragon 732G was announced on August 31, 2020.[110]

Snapdragon 750G and 765/765G/768G 5G (2020)[edit]

The Snapdragon 765 and 765G were announced on December 4, 2019[115] as Qualcomm's first SoCs with an integrated 5G modem, and the first 700 series SoCs to support updatable GPU Drivers via the Play Store.[116]
The Snapdragon 768G was announced on May 10, 2020.[117]
The Snapdragon 750G was announced on September 22, 2020.[118]

Snapdragon 780G 5G (2021)[edit]

The Snapdragon 780G was announced on March 25, 2021.[123]

Snapdragon 8 Series[edit]

The Snapdragon 8 Series is the high-end SoC and serves as Qualcomm's current flagship, succeeding the S4 Pro and the older S1/S2/S3 series.

Snapdragon 800, 801 and 805 (2013/14)[edit]

The Snapdragon 800 was announced on January 8, 2013.[63]

  • CPU features
    • 4 cores up to 2.36 GHz Krait 400
    • 4 KiB + 4 KiB L0 cache, 16 KiB + 16 KiB L1 cache and 2 MiB L2 cache
  • GPU features
    • Adreno 330 GPU
      • Up to 128 ALU (From 96 on Adreno 320)
      • Up to 1024 KB On-chip graphics memory (From 512 KB on Adreno 320)
      • Up to x30 relative performance on OpenGL ES 2.0 from Adreno 200[12]
      • Support OpenGL ES 3.0 (Over 2.0 Adreno Adreno 225)
      • Unified shader model Scalar instruction set (from Unified shader model 5-way VLIW on 2xx Adreno series)
  • DSP features
    • H.264, VP8 UHD/30fps encoding/decoding (From 1080p60)
  • ISP features
    • Up to 21 megapixel, stereoscopic 3D dual image signal processor (HDRI Support)
    • Throughput: 0.64 GP/sec
    • Up to 320MHz
  • Modem and Wireless features
    • Wi-Fi 802.11ac wave 1 support
    • Gobi 4G (LTE Cat 4: download up to 150 Mbit/s, upload up to 50 Mbit/s), on some models
  • SOC features
    • eMMC 4.5 support[124]
    • USB 2.0 and 3.0
    • Qualcomm Quick Charge 2.0
    • 28 nm HPm (From 28 nm HP)
    • 3 or 4 Watt TDP [125]
    • Up to 1 billion transistors[126]
    • Die size: 118mm²

The Snapdragon 801 was announced on February 24, 2014.[127]
Notable features:[128]

  • CPU features
    • 4 cores up to 2.45 GHz Krait 400
  • DSP features
    • H.265 HD/30fps software decoding
  • ISP features
    • Throughput: 1.0 GP/sec (From 0.64 GP/sec on S800)[129]
    • Up to 465MHz (From 320MHz on S800)[129]
  • eMMC 5.0 support (Up to 400MB/s) [124]
  • DSDA[124]

The Snapdragon 805 was announced on November 20, 2013.[130]

  • CPU features
    • 4 cores up to 2.7 GHz Krait 450
    • Up to 128-bit wide LPDDR3 memory interface
  • GPU features
    • Adreno 420 GPU
      • Up to 128 ALU
      • Hardware dynamic tessellation support
      • Support for hull, domain and geometry shaders[131]
      • Update with new dedicated connection to the memory controller(From shared bus with the video decoder and ISP)[131]
      • Up to 40% increase performance in shader hardware[131]
      • 1.5x Larger L2 cache (1536 KB from 1024 KB)
      • Better support Anisotropic filtering
      • Larger texture cache[132]
      • Full support Direct3D Feature Level 11_2 and OpenCL 1.2
  • DSP features
    • Improve H.265 support : UHD/30fps hardware decoding[133]
    • 1080p 120fps encoding and decoding
  • ISP features
    • Up to 55 megapixel
    • Throughput: 1.0 GP/sec(From 0.64 GP/sec on SD800)[134]
  • Modem and Wireless features
    • External modem

Snapdragon 808 and 810 (2015)[edit]

The Snapdragon 808 and 810 were announced on April 7, 2014.[142]

Snapdragon 808 notable features over its predecessor (805):[143]

  • CPU features
    • ARMv8-A 64-bit architecture (with Global Task Scheduling)
    • 2 + 4 cores (1.82 GHz Cortex-A57 + 1.44 GHz Cortex-A53)
    • Up to 48KB Data + 32KB Instr. L1 cache (From 16 KB + 16 KB)[144]
  • GPU features
    • Up to 128 ALU
    • Adreno 418 GPU with support for Vulkan 1.0[145]
    • Support OpenGL ES 3.1
    • Full support Direct3D Feature Level 11_2 and OpenCL 1.2
  • DSP features
    • Hexagon V56 DSP
  • ISP features
    • 12-bit[146] dual-ISP up to 21 MP
  • SOC features
    • 2 billion transistor[126]

Snapdragon 810 notable features over its lower end (808):[147]

  • CPU features
    • 4 + 4 cores (2.0 GHz Cortex-A57 + 1.5 GHz Cortex-A53)
  • GPU features
    • Adreno 430 GPU with support for Vulkan 1.0
    • Full support Direct3D Feature Level 11_2 and OpenCL 1.2
    • 4K main display support
    • Up to 256 ALU (From 128 on Adreno 330)
  • ISP features
    • 14-bit dual-ISP up to 55 MP
    • Throughput: 1.2 GP/sec (From 1.0 GP/sec on SD805)
    • ISP is clocked at 600 MHz
  • DSP features
    • H.264, H.265 UHD/30fps encoding and decoding[148]
  • Modem and Wireless features
    • Snapdragon X10 LTE modem
      • Cat 9: download up to 450 Mbit/s
      • Upload up to 50 Mbit/s
    • Bluetooth 4.1[149]
  • SOC features
    • 20 nm manufacturing technology
    • 2.5 billion transistor[126]

Snapdragon 820 and 821 (2016)[edit]

The Snapdragon 820 was announced at the Mobile World Congress in March 2015,[158] with the first phones featuring the SoC released in early 2016.[159][160] The Snapdragon 821 was announced in July 2016.[161] The 821 provides a 10% improvement in performance over the 820 due to a faster clocked CPU, but otherwise has similar features, with Qualcomm stating that the 821 is designed to complement rather than replace the 820.[161]

Notable features over its predecessor (Snapdragon 808 and 810):[158]

  • CPU features
    • Custom Kryo quad-core CPU
    • Per Core : L1: 32+32 KB, L2: 2 MB + 1 MB[159]
    • L3 cache shared between CPU cluster[162]
  • GPU features
    • Adreno 530 GPU with support for Vulkan 1.0
    • Less L2 GPU cache (1024 KB from 1536 KB)
    • DirectX 12, OpenCL 2.0, OpenGL ES 3.2
  • DSP features
    • Hexagon 680 DSP 1st generation "AI engine"[163]
      • Down to 2-3 time power consumption (From SD808)
      • New low power island (LPI) for sensor aware apps
      • Hexagon Vector eXtensions
    • All-Ways Aware Hub low power island
    • Neural Processing Engine (NPE)
    • Halide and TensorFlow support
    • H.264, H.265 UHD/30fps encoding
    • H.264, H.265 10-bit, VP9 UHD/60fps decoding
  • ISP features
    • Qualcomm Spectra ISP with Dual 14-bit ISPs
    • 28 MP at 30fps single camera; 25 MP at 30fps single camera with ZSL; 13 MP Dual Camera with ZSL
    • Video Capture: Up to 4K Ultra HD HEVC video capture @ 30FPS
    • Video Playback: Up to 4K Ultra HD 10-bit HEVC video playback @ 60FPS, 1080p@ 240 FPS
    • Throughput: 1.2GP/sec (Same as 810)
  • Modem and Wireless features
    • Snapdragon X12 LTE modem
      • Download: Cat 12 (up to 600 Mbit/s), 3x20 MHz CA; 64-QAM; 4x4 MIMO on 1C
      • Upload: Cat 13 (up to 150 Mbit/s), 2x20 MHz CA; 64-QAM
      • Support MIMO 4×4
    • 802.11a/b/g/n/ac Wi-Fi connectivity
    • Wi-Fi ad support with external chip
  • SOC features
    • 14 nm FinFET process
    • eMMC 5.1/UFS 2.0
    • Quick Charge 3.0[164]
    • 2.0 billion transistors[165]
    • Max 8 Go LPDDR4 Quad-channel 16-bit (64-bit) 1866 MHz (29.8 GB/s)
    • 11 W TDP

The Snapdragon 821 was announced on August 16, 2016.[166]

Notable features over its predecessor (Snapdragon 820):

  • CPU features
    • Faster CPU (+10%)
  • GPU features
    • Faster GPU 650Mhz from 624 (+5%)
    • Snapdragon VR-SDK.[166]
  • ISP features
    • Support Dual PD (PDAF).[166]
    • Extended laser Auto-focus.[166]

Snapdragon 835 (2017)[edit]

The Snapdragon 835 was announced on November 17, 2016.[171]

Notable features over its predecessor (821).

  • CPU features
    • Samsung 10nm FinFET Low-Power Early fabrication, 3 billion transistors[133]
    • 4 Kryo 280 Gold (ARM Cortex-A73 based)
      • L1 cache: 64 kB + 64 kB
      • L2 cache: 2 MB
    • 4 Kryo 280 Silver (ARM Cortex-A53 based)
    • LPDDR4X in dual-channel mode, up to 1866MHz
  • GPU features
    • Adreno 540 graphics with support for Vulkan 1.1, DirectX 12 (Feature level 12_1), OpenCL 2.0 and OpenGL ES 3.2
    • Quad-Core GPU @ 710/670 MHz with 384 ALUs, 16 TMUs and 12 ROPs[172]
    • @ 710 MHz: 727.04 GFLOPs, 11.36 GTexels/s and 8.52 GPixels/s
    • @ 670 MHz: 686.08 GFLOPs, 10.72 GTexels/s and 8.04 GPixels/s
    • Qualcomm Q-Sync (Variable Refresh Rate) and Adreno Foveation (Foveated Rendering)[133]
  • DSP features
    • Hexagon 682 DSP 2nd generation "AI engine"
    • Hexagon Vector eXtensions
    • All-Ways Aware Hub low power island
    • Neural Processing Engine (NPE)
    • Halide and TensorFlow support
    • H.264, H.265, VP9 UHD/30fps encoding and UHD/60fps 10-bit decoding
    • High-dynamic-range video support(HDR10)/Ultra HD Premium (only Decoding)
    • DSD and 32-bit/384kHz PCM audio support with WCD9341 codec
  • ISP features:
    • Qualcomm Spectra 180 ISP with Dual 14-bit ISPs
    • Single Camera, 30fps: Up to 32 MP
    • 32 MP at 30fps single camera; 25 MP at 30fps single camera with ZSL; 16 MP Dual Camera with ZSL
    • Video Capture: Up to 4K Ultra HD video capture @ 30FPS
    • Video Playback: Up to 4K Ultra HD video playback
    • Codec Support: H.265 (HEVC), H.264 (AVC), VP9
  • Modem and Wireless features
    • Snapdragon X16 LTE modem
      • Downlink: LTE Cat 16 up to 1 Gbit/s, 4x20 MHz carrier aggregation, up to 256-QAM
      • Uplink: LTE Cat 13 up to 150 Mbit/s, Qualcomm® Snapdragon Upload+ (2x20 MHz carrier aggregation, up to 64-QAM, uplink data compression)
    • 802.11a/b/g/n/ac/ad Wi-Fi connectivity
    • Bluetooth 5.0 (From Bluetooth 4.1)
  • SOC features
    • 10 nm FinFET LPE (Samsung)
    • Die size: 72.3mm²[172]
    • 3 billion Transistors
    • UFS 2.1, SD 3.0 (UHS-I)
    • DisplayPort, HDMI 2.0, USB Type-C 3.1 with USB Power Delivery
    • Qualcomm Quick Charge 4[173]
    • Up to 8 GB LPDDR4X Dual-channel 32-bit (64-bit) 1866 MHz (29.8 GB/s)[174]

Snapdragon 845 (2018)[edit]

The Snapdragon 845 was announced on December 7, 2017.[177][178]

Snapdragon 845's notable features:[179][180][181]

  • CPU features
    • Samsung 10nm FinFET Low-Power Plus fabrication
    • 4 Kryo 385 Gold (ARM Cortex-A75 based)
      • L1 cache: 64 KB + 64 KB
      • L2 cache: 256 KB
    • 4 Kryo 385 Silver (ARM Cortex-A55 based)
    • DynamIQ with 2 MiB L3 cache
  • 3 MiB system-level cache for CPU, GPU, DSP... [182]
  • GPU features
    • Adreno 630 graphics with support for Vulkan 1.1, DirectX 12 (Feature level 12_1), OpenCL 2.0, OpenGL ES 3.2 and DxNext eXtended Reality (XR)
    • Dual-Core GPU @ 710 MHz with 512 ALUs, 24 TMUs and 16 ROPs[172] (up from 512 ALUs, 16 TMUs and 12 ROPs)
    • 727.04 GFLOPs, 17.04 GTexels/s and 11.36 GPixels/s[172]
    • Inside-out Room-Scale 6DoF with simultaneous localization and mapping (SLAM)
    • Advanced visual inertial odometry (VIO) And Adreno Foveation
    • Support for HDR10 and Hybrid Log-Gamma (HLG)
    • DisplayPort, HDMI 2.0, USB Type-C 3.1 with USB Power Delivery
  • DSP features
    • Hexagon 685 3rd generation "AI engine" with greater than 3 trillion operations per second (TOPS)
    • Hexagon Vector eXtensions
    • All-Ways Aware Hub low power island
    • Neural Processing Engine (NPE)
    • Caffe, Caffe2, Halide and TensorFlow support
    • Up to 4K Ultra HD @ 60 FPS (From 4K30 Encode), 2x 2400x2400 @ 120 FPS (VR)
    • Can record 240 FPS in 1080p and 480 FPS in 720p (Slow motion)
    • 10-bit color depth (encoding and decoding) on H.264, H.265 and VP9
    • BT.2020 support on DSP and GPU[179]
  • ISP features:
    • Qualcomm Spectra 280 ISP with Dual 14-bit ISPs
    • 192 MP single camera; 48 MP single camera with MFNR; 32 MP at 30fps single camera with MFNR/ZSL; 16 MP at 60fps single camera with MFNR/ZSL; 16 MP at 30fps Dual Camera with MFNR/ZSL
  • Modem and Wireless features
    • Downlink: 5x20 MHz carrier aggregation, up to 256-QAM, up to 4x4 MIMO on three carriers[181]
    • Uplink: 2x20 MHz carrier aggregation, up to 64-QAM
    • Bluetooth enhancements
    • Ultra-low power wireless earbuds
    • Direct audio and aptX HD quality stereo broadcast to multiple wireless speakers
    • Wi-Fi ad 60 GHz with external Module[181]
    • Improve GPS support : Glonass, Beidou, Galileo, QZSS and SBAS[181]
  • System on a chip features
    • 10 nm FinFET LPP (Samsung)
    • Die size: 94 mm²[172]
    • 5.3 billion Transistors[183]
    • Secure Vault (SPU) [184][185]
    • Native DSD support, PCM up to 384kHz/32bit
    • Qualcomm Quick Charge 4+
    • 9 W TDP
    • Up to 8 GB LPDDR4X Quad-channel 16-bit (64-bit) 1866 MHz (29.9 GB/s)[186]

Snapdragon 855/855+ (2019) and 860 (2021)[edit]

The Snapdragon 855 was announced on December 5, 2018.[187][188]The Snapdragon 855 is Qualcomm's first 7 nm FinFET chipset.

Notable features over its predecessor (845):

  • 7 nm (N7 TSMC) process
  • Die size: 73 mm²(8.48 mm × 8.64 mm)[189][190]
  • 6.7 billion Transistors[190]
  • Support up to 16 GB LPDDR4X 2133 MHz support
  • 4x 16-bit memory bus, (34.13 GB/s) up to 16 GB[191]
  • NVM Express 2x 3.0 (1x for external 5G modem)
  • 10 W TDP
  • CPU features[192]
    • 1 Kryo 485 Prime (Cortex-A76-based), up to 2.84 GHz. Prime core with 512 KB pL2
    • 3 Kryo 485 Gold (Cortex-A76-based), up 2.42 GHz. Performance cores with 256 KB pL2 each
    • 4 Kryo 485 Silver (Cortex-A55-based), up 1.8 GHz. Efficiency cores with 128 KB pL2 each
    • DynamIQ with 2 MB sL3 cache
  • 3 MB system-level cache
  • GPU features
    • Adreno 640 GPU with support for Vulkan 1.1
    • Up to 768 ALU (From 512 on Adreno 630)
    • Tri-core GPU @ 585 MHz with 768 ALUs, 36 TMUs and 28 ROPs (up from 512 ALUs, 24 TMUs and 16 ROPs)[172]
    • 954.7 FP32 GFLOPs, 1853.3 FP16 GFLOPs, 28.1 bilinear GTexels/s, 9.4 GPixels/s and 300 GB/s effective memory bandwidth[193]
    • HDR gaming (10-bit color depth, Rec. 2020)
    • 120 fps gaming
    • Improvement on hardware-accelerated H.265 and VP9 decoder
    • HDR playback codec support for HDR10+, HDR10, HLG and Dolby Vision
    • Volumetric VR video playback
    • 8K 360 VR video playback
    • Quarterly GPU driver updates via Google Play Store
    • Android GPU Inspector Tool[194]
  • DSP features[195]
    • Hexagon 690 4th generation "AI engine" with greater than 7 trillion operations per second (TOPS)
    • Qualcomm Hexagon Vector Accelerator with Hexagon Vector eXtensions
    • Qualcomm Hexagon Tensor Accelerator (HTA)
    • Qualcomm Hexagon Voice Assistant
    • All-Ways Aware Hub
    • Caffe, Caffe2, Halide and TensorFlow support
    • Vector/Scalar performance compared with Hexagon 680: doubled the HVX vector units and 20% increase in scalar performance
  • ISP features:
    • Qualcomm Spectra 380 with dual 14-bit CV-ISPs and hardware accelerator for computer vision
    • Multi-frame noise reduction[196]
    • Hybrid AF
    • 192 MP single camera; 48 MP at 30 fps single camera with MFNR/ZSL; 22 MP at 30 fps dual camera with MFNR/ZSL
    • HEIF photo capture support
    • Tri-core hardware CV functions including object detection & tracking, and stereo depth processing
    • Advanced HDR solution including improved zzHDR and 3-exposure Quad Color Filter Array (QCFA) HDR
    • 4K 60 FPS HDR video with real-time object segmentation (portrait mode, background swap) features HDR10, HDR10+ and HLG with Portrait Mode (bokeh), 10-bit color depth and Rec. 2020 color gamut
    • Up to 1.32 Gpixel/s[197]
    • Video Capture Formats: HDR10, HLG
    • Video Codec Support: H.265 (HEVC), H.264 (AVC), HLG, HDR10, HDR10+, VP8, VP9
  • Modem and Wireless features:[198]
    • Internal X24 LTE Modem
    • Download: 2000 Mbit/s DL (Cat. 20), 7x20 MHz CA, 256-QAM, 4x4 MIMO
    • Upload: 316 Mbit/s UL (Cat 20), 3x20 MHz CA, 256-QAM
    • External Snapdragon X50 (5G Modem): 5000 Mbit/s DL
    • Qualcomm Wi-Fi 6-ready mobile platform:
      • Wi-Fi Standards: 802.11ax-ready, 802.11ac Wave 2, 802.11a/b/g, 802.11n
      • Wi-Fi Spectral Bands: 2.4 GHz, 5 GHz• Channel Utilization: 20/40/80 MHz
      • MIMO Configuration: 2x2 (2-stream) • MU-MIMO• Dual-band simultaneous (DBS)
      • Key Features: 8x8 sounding (up to 2x improvement over 4x4 sounding devices), Target Wakeup Time for up to 67% better power efficiency, latest security with WPA3
    • Qualcomm 60 GHz Wi-Fi mobile platform
      • Wi-Fi Standards: 802.11ad, 802.11ay
      • Wi-Fi Spectral Band: 60 GHz
      • Peak speed: 10 Gbit/s

The Snapdragon 855+ was announced on July 15, 2019.[199]

The Snapdragon 860 was announced on March 22, 2021.

Snapdragon 865/865+ 5G (2020) and 870 5G (2021)[edit]

The Snapdragon 865 was announced on December 4, 2019.[203]

Notable features over its predecessor (855):[204]

  • second gen 7 nm (N7P TSMC) process
  • 10.3 billion transistors[205]
  • 83.54 mm2 (8.49 mm x 9.84 mm)[206]
  • Support up to 16 GB LPDDR5 2750 MHz or LPDDR4X 2133 MHz support
  • 4x 16-bit memory bus, (or 34.13 GB/s) up to 16 GB[207]
  • NVM Express 2x 3.0 (1x for external 5G modem)
  • Support Quick charge 4+
  • 10 W TDP[208]
  • CPU features
    • 1 Kryo 585 Prime (Cortex-A77-based), up to 2.84 GHz (3.1 GHz for 865+, 3.2 GHz for 870). Prime core with 512 KB pL2
    • 3 Kryo 585 Gold (Cortex-A77-based), up 2.42 GHz. Performance cores with 256 KB pL2 each
    • 4 Kryo 585 Silver (Cortex-A55-based), up 1.8 GHz. Efficiency cores with 128 KB pL2 each
    • DynamIQ with 4 MB sL3,
    • 25% performance uplift and 25% power efficiency improvement
  • 3 MB system-level cache
  • GPU features[207]
    • Adreno 650 GPU with support for Vulkan 1.1
    • 50% more ALUs and ROPs
    • 25% faster graphics rendering and 35% more power efficient
    • Quarterly GPU driver updates via Google Play Store
    • Android GPU Inspector Tool[194]
    • Desktop Forward Rendering
    • Up to 1372.1 GFLOPs FP32 (From 898.5 GFLOPs on SD855)
  • DSP features
    • Hexagon 698 5th generation "AI engine" capable of 15 trillion operations per second (TOPS)
    • Quad-core Qualcomm Hexagon Tensor Accelerator (HTA)
    • Deep learning bandwidth compression
  • ISP features:
    • Qualcomm Spectra 480 with dual 14-bit CV-ISPs and hardware accelerator for computer vision
    • Multi-frame noise reduction[196]
    • Hybrid AF
    • 200 MP single camera; 64 MP at 30 fps single camera with MFNR/ZSL; 25 MP at 30 fps dual camera with MFNR/ZSL
    • 8K 30 FPS and 4K 120 FPS HDR video
    • Up to 2 Gpixel/s
    • Video capture formats: Dolby Vision, HDR10, HDR10+, HEVC
    • Video codec support: Dolby Vision, H.265 (HEVC), HDR10+, HLG, HDR10, H.264 (AVC), VP8, VP9
    • New functionalities to improve noise reduction and local contrast enhancements
  • Modem and wireless features:
    • External X55 LTE Modem
    • Modes: NSA, SA, TDD, FDD
    • 5G mmWave: 800 MHz bandwidth, 8 carriers, 2×2 MIMO
    • 5G sub-6 GHz: 200 MHz bandwidth, 4×4 MIMO
    • 5G NR Sub-6 + mmWave download: 7000 Mbit/s DL
    • 5G NR Sub-6 + mmWave upload: 3000 Mbit/s UL
    • LTE download: 2500 Mbit/s DL (Cat. 24), 7x20 MHz CA, 1024-QAM, 4x4 MIMO
    • LTE upload: 316 Mbit/s UL (Cat 22), 3x20 MHz CA, 256-QAM
    • Dynamic Spectrum Sharing (DSS)
    • Qualcomm Wi-Fi 6-ready mobile platform:
      • Qualcomm FastConnect 6800 (for 865 and 870), 6900 (for 865+)
      • Wi-Fi standards: 802.11ax-ready (Wi-Fi 6E for 865+), 802.11ac Wave 2, 802.11a/b/g, 802.11n
      • Wi-Fi spectral bands: 2.4 GHz, 5 GHz (for 865 and 870), 2.4 GHz, 5 GHz, 6 GHz (for 865+) • channel utilization: 20/40/80 MHz (for 865 & 870), 20/40/80/160 MHz (for 865+)
      • MIMO configuration: 2x2 (2 Spatial Stream) • MU-MIMO • Dual-band simultaneous (DBS)
      • Key features: 8x8 sounding (up to 2x improvement over 4x4 sounding devices), Target Wakeup Time for up to 67% better power efficiency, latest security with WPA3
    • Qualcomm 60 GHz Wi-Fi mobile platform
      • Wi-Fi Standards: 802.11ad, 802.11ay
      • Wi-Fi spectral band: 60 GHz
      • Peak speed: 10 Gbit/s
  • Other features:
    • Secure Processing Unit (SPU) with integrated dual-SIM dual-standby support

The Snapdragon 865+ was announced on July 8, 2020.[209]

The Snapdragon 870 was announced on January 19, 2021.[210]

Snapdragon 888 5G (2021)[edit]

The Snapdragon 888 was announced on December 1, 2020.[215][216][217][218][219][220]

Notable features over its predecessor (865):

  • 5nm (5LPE) Samsung process
  • Support up to 16 GB LPDDR5 3200 MHz (51.2  GB/s)[221]
  • 4x 16-bit memory bus
  • Quick Charge 5 (100W+)
  • Support UFS 3.1
  • 10 W[222]
  • CPU features
    • 1 Kryo 680 Prime (ARM Cortex-X1-based), up to 2.84 GHz. Prime core with 1 MB pL2 and 64 KB pL1
    • 3 Kryo 680 Gold (ARM Cortex-A78-based), up 2.42 GHz. Performance cores with 512 KB pL2 each
    • 4 Kryo 680 Silver (ARM Cortex-A55-based), up 1.8 GHz. Efficiency cores with 128 KB pL2 each
    • Move to instruction set ARMv8.4-A (From ARMv8.2-A)
    • DynamIQ with 4 MB sL3,
    • 25% performance uplift and 25% power efficiency improvement
  • 3 MB system-level cache
  • GPU features
    • Adreno 660 GPU with API Support: OpenGL ES 3.2, OpenCLTM 2.0 FP, Vulkan 1.1
    • Up to 840 MHz (From 670 MHz on 865+ and 870)
    • 35% faster graphics rendering and 20% more power efficient
    • 73% AI performance boost (From 15 TOPS to 26 TOPS)
    • Variable rate shading (VRS)[223]
    • Demura and subpixel rendering for OLED uniformity
    • Up to 1720.3 GFLOPs FP32 (From 1202.1 GFLOPs on SD865)
    • HDR video playback formats: HDR10, HDR10+, Dolby Vision, HLG
    • HDR gaming (including 10-bit color depth, Rec. 2020 color gamut)
    • On-device display: 4K@60Hz, QHD+@144Hz
    • External display: 4K@60Hz, 10-bit, Rec. 2020, HDR10, HDR10+
  • DSP features
    • Hexagon 780 with Fused AI Accelerator architecture 6th generation "AI engine" capable of 26 trillion operations per second (TOPS), From 15 TOPS on 865.
      • Hexagon Tensor Accelerator
      • Hexagon Vector eXtensions
      • Hexagon Scalar Accelerator
    • Qualcomm Sensing Hub (2nd generation)
      • New dedicated AI processor
      • 80% task reduction offload from Hexagon DSP
      • 5X more processing power
    • 16X larger shared memory
    • 1000X hand off time improvement in certain use cases[224]
    • 50% faster scalar accelerator, 2x faster tensor accelerator
    • Video codec playback support: H.264 (AVC), H.265 (HEVC), VP8, VP9
  • ISP features:
    • Qualcomm Spectra 580 with triple 14-bit CV-ISPs and hardware accelerator for computer vision
    • Single camera: 1x 200 MP or 84 MP at 30 fps with MFNR/ZSL (Multi Frame Noise Reduction/Zero Shutter Lag)
    • Dual camera: 64+25 MP at 30 fps with MFNR/ZSL
    • Triple camera: 3x 28 MP at 30 fps with MFNR/ZSL
    • 8K 30 FPS and 4K 120 FPS HDR video + 64 MP Photo
    • Slow-mo video capture at 720p @ 960 FPS, 1080p @ 480 FPS
    • HDR video capture formats: HEVC with HDR10, HDR10+, Dolby Vision, HLG
    • HDR photo capture: 10-bit HDR HEIF
    • Computational HDR photo and video capture, support for Multi-Frame and Staggered HDR sensors
    • Real-time object classification, segmentation, and replacement
    • AI-based auto-focus, auto-exposure and auto-white-balance
    • Advanced HW-based face detection with deep learning filter
    • New low-light architecture (capture photos in 0.1 lux)
    • 2.7 Gigapixel per second ISP (+35% speed increase over S865)
    • 120 photos at 12MP/s
  • Modem and wireless features:
    • Internal X60 LTE Modem
    • Modes: NSA, SA, TDD, FDD
    • 5G mmWave: 800 MHz bandwidth, 8 carriers, 2×2 MIMO
    • 5G sub-6 GHz: 200 MHz bandwidth, 4×4 MIMO
    • 5G NR Sub-6 + mmWave download: 7500 Mbit/s DL
    • 5G NR Sub-6 + mmWave upload: 3000 Mbit/s UL
    • LTE download: 2500 Mbit/s DL (Cat. 24), 7x20 MHz CA, 1024-QAM, 4x4 MIMO
    • LTE upload: 316 Mbit/s UL (Cat 22), 3x20 MHz CA, 256-QAM
    • Dynamic Spectrum Sharing (DSS)
    • Bluetooth 5.2
      • Dual antennas[225]
      • Premium audio
    • Qualcomm Wi-Fi 6-ready mobile platform:
      • Qualcomm FastConnect 6900
      • Wi-Fi standards: 802.11ax-ready (Wi-Fi 6E), 802.11ac Wave 2, 802.11a/b/g, 802.11n
      • Wi-Fi spectral bands: 2.4 GHz, 5 GHz, 6 GHz • channel utilization: 20/40/80/160 MHz
      • MIMO configuration: 2x2 (2 Spatial Stream) • MU-MIMO • Dual-band simultaneous (DBS) (2×2 + 2×2)
      • Key features: 8x8 sounding (up to 2x improvement over 4x4 sounding devices), Target Wakeup Time for up to 67% better power efficiency, latest security with WPA3
    • Qualcomm 60 GHz Wi-Fi mobile platform
      • Wi-Fi Standards: 802.11ad, 802.11ay
      • Wi-Fi spectral band: 60 GHz
      • Peak speed: 10 Gbit/s
  • Other features:
    • Secure Processing Unit (SPU) with integrated dual-SIM dual-standby support
    • Adds compatibility with Content Authenticity Initiative[226]

Compute Platforms for Windows 10 PCs[edit]

Snapdragon 835, 850, 7c, 8c, 8cx and 8cx Gen 2 5G[edit]

The Snapdragon 835 Mobile PC Platform for Windows 10 PCs was announced on December 5, 2017.[177]
The Snapdragon 850 Mobile Compute Platform for Windows 10 PCs, was announced on June 4, 2018.[227]It is essentially an over-clocked version of the Snapdragon 845.
The Snapdragon 8cx Compute Platform for Windows 10 PCs was announced on December 6, 2018.[228][229]

Notable features over the 855:

  • 10 MB L3 cache
  • 8x 16-bit memory bus, (68.26 GB/s)
  • NVM Express 4x

The Snapdragon 7c Compute Platform and Snapdragon 8c Compute Platform for Windows 10 PCs were announced on December 5, 2019.[230]
The Snapdragon 8cx Gen 2 5G Compute Platform for Windows 10 PCs was announced on September 3, 2020.[231]

Microsoft SQ1 and SQ2[edit]

The Microsoft SQ1 was announced on October 2, 2019.[238][239] Co-developed with Microsoft, it was exclusively designed for Microsoft's Surface Pro X. Technically, it's a Snapdragon 8cx SoC with faster Adreno 685 GPU core providing performance of 2100 GFLOPs.
The Microsoft SQ2 was announced on October 1, 2020.[240]

Hardware codec supported[edit]

See : Qualcomm Hexagon

Wearable platforms[edit]

Snapdragon Wear series[edit]

The Qualcomm Snapdragon Wear 2100 processor is designed for smartwatches. It is available in both connected (4G/LTE and 3G) and tethered (Bluetooth and Wi-Fi) versions. The LG Watch Style uses this processor.[241]
The Snapdragon Wear 2500[242] was announced on June 26, 2018.
The Snapdragon Wear 3100[243] was announced on September 10, 2018.

The Snapdragon Wear 4100 and 4100+[244] were announced on June 30, 2020. The difference between the two models is the inclusion of the co-processor QCC1110 in the 4100+.

Automotive platforms[edit]

Snapdragon 602A, 820A and 855A[edit]

The Snapdragon 602A,[256] for application in the motor industry,[257] was announced on January 6, 2014.
The Snapdragon 820A[258] was announced on January 6, 2016.

Embedded platforms[edit]

Snapdragon 410E, 600E, 800, 810 and 820E[edit]

The Snapdragon 410E Embedded and Snapdragon 600E Embedded were announced on September 28, 2016.[261][262]
The Snapdragon 800 for Embedded
The Snapdragon 810 for Embedded
The Snapdragon 820E Embedded was announced on February 21, 2018.[263]

Vision Intelligence Platform[edit]

The Qualcomm Vision Intelligence Platform[269] was announced on April 11, 2018.[270][271] The Qualcomm Vision Intelligence Platform is purpose built to bring powerful visual computing and edge computing for machine learning to a wide range of IoT devices.

Home Hub and Smart Audio platforms[edit]

Qualcomm 212, 624 and Smart Audio[edit]

The Qualcomm Smart Audio Platform (APQ8009 and APQ8017)[274] was announced on June 14, 2017.[275]
The Qualcomm 212 Home Hub (APQ8009)[276] and Qualcomm 624 Home Hub (APQ8053)[277] were announced on January 9, 2018.[278]

The QCS400 Series was announced March 19, 2019.[279]

eXtended Reality (XR) platforms[edit]

Snapdragon XR1 and XR2[edit]

In May 2018, Qualcomm announced the Snapdragon XR1 Platform, their first purpose-built SoC for Augmented reality, Virtual reality and mixed reality. Qualcomm also announced that HTC Vive, Pico, Meta, and Vuzix would be announcing consumer products featuring the XR1 by the end of 2018.[288]
The Snapdragon XR2 5G Platform was announced on December 5, 2019, and is a derivative of the Snapdragon 865.[289] and is used in the Oculus Quest 2 VR headset, released in October 2020.

Bluetooth SoC platforms[edit]

Following Qualcomm's acquisition of CSR in 2015, Qualcomm designs ultra-low-power Bluetooth SoCs under the CSR, QCA and QCC brands for wireless headphones and earbuds. Qualcomm has worked with both Amazon and Google on reference designs to help manufacturers develop headsets with support for Alexa, Google Assistant and Google Fast Pair.[292][293] Qualcomm announced the QCC5100 Series at CES 2018.[294]

On January 28 2020, the QCC304x and QCC514x SoCs were published as Bluetooth 5.2 certified by the Bluetooth SIG.[295][296] On the previous day Qualcomm published a blog post on LE Audio, referring to the QCC5100 series.[297] On March 25 2020, the BLE Audio QCC304x and QCC514x SoCs were officially announced.[298][299]

Qualcomm QCC300x Series Bluetooth audio SoCs[edit]

Qualcomm QCC30xx Series Bluetooth audio SoCs[edit]

Qualcomm QCC510x Series Bluetooth audio SoCs[edit]

Related pages[edit]

  • Qualcomm Adreno
  • Qualcomm Hexagon
  • Qualcomm Snapdragon LTE modem
  • Devices using Qualcomm Snapdragon processors

See also[edit]

  • Comparison of ARMv8-A cores
  • Comparison of ARMv7-A cores

Similar platforms[edit]

  • Ax by Apple
  • Exynos by Samsung
  • Kirin by HiSilicon
  • MTxx by MediaTek
  • UniSoc by Spreadtrum
  • Tegra by Nvidia

References[edit]

  1. ^ "www.tripleoxygen.net" (PDF).
  2. ^ "phonedb.net qualcomm_msm6260".
  3. ^ "phonedb.net qualcomm_msm6550".
  4. ^ "phonedb.net qualcomm_msm6500".
  5. ^ a b "semiwiki.com" (PDF).
  6. ^ a b "phonedb.net".
  7. ^ "qualcomm qsd8250 snapdragon s1 tous les téléphones (liste)". PhonesData (in French). Retrieved February 7, 2021.
  8. ^ a b c d e f g h i j k l m n o p q r s t u "Snapdragon S3, S2, S1 Processor Product Specs" (PDF). Qualcomm. Archived (PDF) from the original on May 14, 2018. Retrieved June 30, 2018.
  9. ^ "Spice Stellar Xtacy Mi-352, Android Murah Seharga 700 Ribuan". teknofun.net. Archived from the original on January 9, 2015.
  10. ^ "LG Optimus L3 II". Archived from the original on February 3, 2014. Retrieved November 15, 2013.
  11. ^ Klug, Anand Lal Shimpi, Brian. "Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored". www.anandtech.com. Retrieved January 25, 2021.
  12. ^ a b c d e f JJ Wu (January 16, 2013). "Qualcomm Snapdragon S4 Pro-based Smart Phone(Simple)". Cite journal requires |journal= (help)
  13. ^ a b c "Qualcomm's Snapdragon Adreno GPU technology". VideoCardz.com. September 10, 2011. Retrieved January 25, 2021.
  14. ^ "https://phonedb.net". External link in |title= (help)
  15. ^ "Archived copy" (PDF). Archived (PDF) from the original on February 23, 2017. Retrieved June 28, 2015.CS1 maint: archived copy as title (link)
  16. ^ a b "1X Advanced" (PDF). Archived (PDF) from the original on January 4, 2014. Retrieved February 26, 2014.
  17. ^ a b Klug, Anand Lal Shimpi, Brian. "Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored". www.anandtech.com. Retrieved January 25, 2021.
  18. ^ "Qualcomm Document Center" (PDF). Qualcomm. Archived (PDF) from the original on October 5, 2012. Retrieved February 2, 2016.
  19. ^ a b c d e f g h i j k l m n o p q r "Snapdragon S4, S3, S2 and S1". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  20. ^ Klug, Anand Lal Shimpi, Brian. "Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored". www.anandtech.com. Retrieved January 25, 2021.
  21. ^ "Snapdragon S4, S3, S2, S1 Processor Specs and Details". Qualcomm. May 17, 2014. Retrieved February 6, 2021.
  22. ^ a b "Qualcomm Announces Next-generation Snapdragon Mobile Chipset Family". Qualcomm. February 15, 2011. Archived from the original on March 6, 2012. Retrieved January 29, 2012.
  23. ^ Hinum, Klaus. "Qualcomm Snapdragon S4 APQ8064A SoC". Notebookcheck. Retrieved February 7, 2021.
  24. ^ "BlackBerry Z30 – CPU". Blackberry. Blackberry. Archived from the original on February 2, 2014. Retrieved October 3, 2013.
  25. ^ "Qualcomm Snapdragon S4 Pro MSM8960DT RISC Multi-core Application Processor with Modem". PDAdb.net. Archived from the original on August 4, 2013. Retrieved December 19, 2013.
  26. ^ "Qualcomm Snapdragon S4 Pro APQ8064 RISC Multi-core Application Processor". PDAdb.net. Archived from the original on December 15, 2013. Retrieved February 27, 2012.
  27. ^ a b c d e f "Snapdragon 200 Processor". Qualcomm. October 2, 2018. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  28. ^ a b c d Amaresh, Atithya (June 20, 2013). "Qualcomm Intros New Snapdragon 200 Dual And Quad Core Chips". EFYTimes.com. EFY Group. Archived from the original on October 23, 2013. Retrieved June 22, 2013.
  29. ^ "Qualcomm unveils the Snapdragon 210 and 208 processors". Qualcomm. Archived from the original on February 25, 2016. Retrieved February 19, 2016.
  30. ^ a b "Snapdragon 412 and 212 processors announced". Qualcomm. July 28, 2015. Archived from the original on February 25, 2016. Retrieved February 18, 2016.
  31. ^ "Qualcomm 205 Mobile Platform designed to bring 4G LTE connectivity to more people in more places | Qualcomm". Qualcomm. March 20, 2017. Archived from the original on March 20, 2017. Retrieved March 20, 2017.
  32. ^ "Qualcomm 205 Mobile Platform". Qualcomm. Archived from the original on March 20, 2017. Retrieved March 20, 2017.
  33. ^ "Snapdragon 208 Processor". Qualcomm. Archived from the original on March 3, 2016. Retrieved February 18, 2016.
  34. ^ "Snapdragon 210 Processor". Qualcomm. Archived from the original on February 16, 2016. Retrieved February 18, 2016.
  35. ^ "Snapdragon 212 Mobile Platform". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  36. ^ "New Qualcomm 215 Mobile Platform Raises the Bar for Mass Market Devices". Qualcomm. Archived from the original on June 8, 2020. Retrieved July 18, 2020.
  37. ^ "Qualcomm 215 Mobile Platform". Qualcomm. Archived from the original on May 7, 2020. Retrieved July 18, 2020.
  38. ^ a b c d e f g h i j k l m n o p "Snapdragon 400 Processor". Qualcomm. Archived from the original on November 26, 2016. Retrieved November 17, 2016.
  39. ^ "Qualcomm Technologies Introduces Snapdragon 410 Chipset with Integrated 4G LTE World Mode for High-Volume Smartphones". December 9, 2013. Archived from the original on December 10, 2013. Retrieved December 9, 2013.
  40. ^ "SMIC achieves a historic manufacturing milestone". Qualcomm. December 17, 2014. Archived from the original on July 4, 2020. Retrieved April 18, 2020.
  41. ^ a b "4 new Snapdragon processors take 4G LTE and multimedia to new heights". Qualcomm. February 18, 2015. Archived from the original on April 23, 2015. Retrieved February 26, 2015.
  42. ^ "Snapdragon 410 Processor". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  43. ^ "Snapdragon 412 Processor". Qualcomm. Archived from the original on February 25, 2016. Retrieved February 18, 2016.
  44. ^ "Snapdragon 415 Processor". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  45. ^ a b "Snapdragon 617 and 430 build up the mid-tier with high-end features". Qualcomm. Archived from the original on October 2, 2015. Retrieved September 16, 2015.
  46. ^ "Introducing the Snapdragon 625, 435, and 425 processors". Qualcomm. February 11, 2016. Archived from the original on February 16, 2016. Retrieved February 18, 2016.
  47. ^ a b "New Snapdragon 653, 626, 427 processors focus on advanced performance and connectivity". Qualcomm. October 18, 2016. Archived from the original on November 15, 2016. Retrieved November 15, 2016.
  48. ^ a b Zimmerman, Steven (October 17, 2016). "Introducing the Qualcomm Snapdragon 653, 626, and 427: Qualcomm Announces Successors to Popular Mid-Range SoCs". XDA Developers. Archived from the original on October 18, 2016. Retrieved October 17, 2016.
  49. ^ "Snapdragon 425 Processor". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  50. ^ "Snapdragon 427 Mobile Platform". Qualcomm. Archived from the original on October 30, 2016. Retrieved November 15, 2016.
  51. ^ "Snapdragon 430 Mobile Platform". Qualcomm. Archived from the original on October 2, 2015. Retrieved September 16, 2015.
  52. ^ "Snapdragon 435 Mobile Platform". Qualcomm. Archived from the original on February 16, 2016. Retrieved February 13, 2016.
  53. ^ "Qualcomm Snapdragon 450 Mobile Platform to Bring 14nm FinFET Process, Enhanced Dual-Camera Support and Fast LTE Connectivity to Mid-Range Smartphones and Tablets". Qualcomm. Archived from the original on July 7, 2017. Retrieved June 29, 2017.
  54. ^ a b "Introducing Snapdragon 632, 439 and 429 for enhanced mobile experiences, superior performance". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  55. ^ "Snapdragon 429 Mobile Platform". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  56. ^ "Snapdragon 439 Mobile Platform". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  57. ^ a b "Qualcomm Announces Snapdragon 632, 439 and 429 - Expanding the Low-Mid-tier". anandtech.com. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  58. ^ "Snapdragon 450 Mobile Platform". Qualcomm. Archived from the original on July 7, 2017. Retrieved June 29, 2017.
  59. ^ a b c "Qualcomm Launches Three New Snapdragon Mobile Platforms to Address Ongoing Demand for 4G Smartphones". Qualcomm. Archived from the original on January 21, 2020. Retrieved January 21, 2020.
  60. ^ "Snapdragon 460 Mobile Platform". Qualcomm. Archived from the original on February 25, 2020. Retrieved January 21, 2020.
  61. ^ "Qualcomm Expands 5G Capabilities to Mobile Devices Powered by New Snapdragon 480 5G Mobile Platform, a First in the Snapdragon 4-Series". Qualcomm. Retrieved January 4, 2021.
  62. ^ "Snapdragon 480 5G Mobile Platform". Retrieved January 4, 2021.
  63. ^ a b c d e f Las Vegas. "Qualcomm Announces Next Generation Snapdragon Premium Mobile Processors". Qualcomm. Archived from the original on December 26, 2013. Retrieved December 19, 2013.
  64. ^ a b c "Snapdragon 600 Processor". Qualcomm. October 2, 2018. Archived from the original on December 23, 2017. Retrieved February 23, 2018.
  65. ^ Barcelona (February 24, 2014). "Qualcomm Technologies Announces World's First Commercial 64-bit Octa-Core Chipset with Integrated 5 Mode Global LTE". Qualcomm. Archived from the original on April 4, 2014. Retrieved April 8, 2014.
  66. ^ "Snapdragon 610 & 615: Qualcomm Continues Down its 64-bit Warpath with 4/8-core Cortex A53 Designs". Anandtech. Archived from the original on April 4, 2014. Retrieved April 8, 2014.
  67. ^ "Snapdragon 616 processor debuts with Huawei smartphone". Qualcomm. Archived from the original on February 25, 2016. Retrieved February 18, 2016.
  68. ^ "Snapdragon 610 Processor". Qualcomm. Archived from the original on November 4, 2016. Retrieved November 16, 2016.
  69. ^ "Snapdragon 615 Processor". Qualcomm. October 2, 2018. Archived from the original on March 3, 2016. Retrieved February 18, 2016.
  70. ^ "Snapdragon 616 Processor". Qualcomm. Archived from the original on March 18, 2016. Retrieved February 18, 2016.
  71. ^ "Introducing the Snapdragon 625 and 435". Qualcomm. Archived from the original on February 16, 2016. Retrieved February 18, 2016.
  72. ^ "Snapdragon 653, 626 processors focus on advanced performance". Qualcomm. Archived from the original on November 15, 2016. Retrieved November 15, 2016.
  73. ^ "Snapdragon 617 Processor". Qualcomm. Archived from the original on October 2, 2015. Retrieved September 16, 2015.
  74. ^ "Snapdragon 625 Mobile Platform". Qualcomm. Archived from the original on February 16, 2016. Retrieved February 18, 2016.
  75. ^ "Snapdragon 626 Mobile Platform". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 30, 2018.
  76. ^ "Snapdragon 600 tier processors repositioned to reflect advanced performance". Qualcomm. Archived from the original on December 22, 2015. Retrieved December 17, 2015.
  77. ^ "Snapdragon 650 Mobile Platform". Qualcomm. Archived from the original on December 22, 2015. Retrieved December 17, 2015.
  78. ^ "Snapdragon 652 Mobile Platform". Qualcomm. Archived from the original on December 22, 2015. Retrieved December 17, 2015.
  79. ^ "Snapdragon 653 mobile platform". Qualcomm. Archived from the original on November 15, 2016. Retrieved November 15, 2016.
  80. ^ "Qualcomm Snapdragon 660 and 630 Mobile Platforms Drive Advanced Photography, Enhanced Gaming, Integrated Connectivity and Machine Learning". Qualcomm. Archived from the original on May 9, 2017. Retrieved May 12, 2017.
  81. ^ "Qualcomm Snapdragon 636 Mobile Platform Delivers Significant Increases in Performance, Gaming and Display Technology". Qualcomm. Archived from the original on October 17, 2017. Retrieved October 17, 2017.
  82. ^ "Snapdragon 630 Mobile Platform". Qualcomm. Archived from the original on June 21, 2018. Retrieved June 21, 2018.
  83. ^ "Qualcomm Announces Snapdragon 660 & 630 Mobile Platforms: Better Connectivity, Camera, & Compute at 14nm". anandtech.com. Archived from the original on July 20, 2018. Retrieved July 20, 2018.
  84. ^ "Snapdragon 660 & 630: Mehr Power & Akku, Quick Charge 4 & Bluetooth 5". winfuture.de. Archived from the original on July 20, 2018. Retrieved July 20, 2018.
  85. ^ "Snapdragon 636 Mobile Platform". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  86. ^ "Snapdragon 660 Mobile Platform". Qualcomm. Archived from the original on June 21, 2018. Retrieved June 21, 2018.
  87. ^ "Snapdragon 660-based Application Processor". Qualcomm. Retrieved June 21, 2018.
  88. ^ "Introducing Snapdragon 670 for superior performance, camera capabilities, and AI tech". Qualcomm. Archived from the original on August 8, 2018. Retrieved August 8, 2018.
  89. ^ "Snapdragon 632 Mobile Platform". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  90. ^ "Snapdragon 670 Mobile Platform". Qualcomm. Archived from the original on August 8, 2018. Retrieved August 8, 2018.
  91. ^ "Qualcomm Announces Snapdragon 670 Mobile Platform". xda-developers. August 8, 2018. Archived from the original on August 8, 2018. Retrieved August 8, 2018.
  92. ^ "Qualcomm Snapdragon 675 Mobile Platform Brings Outstanding Gaming with Advanced AI and Cutting-Edge Camera Performance to Consumers in Early 2019". Qualcomm. Archived from the original on October 23, 2018. Retrieved October 23, 2018.
  93. ^ a b "Qualcomm Enables Amazing Consumer Experiences with the New Snapdragon 730, 730G and 665 Mobile Platforms for High and Mid Tier Global Devices". Qualcomm. Archived from the original on April 12, 2019. Retrieved April 12, 2019.
  94. ^ "Introducing Snapdragon 665 for highly intelligent mobile experiences across camera, gaming, and AI". Qualcomm. Archived from the original on April 12, 2019. Retrieved April 12, 2019.
  95. ^ >"Qualcomm Announces New Snapdragon 678 Mobile Platform for Immersive Entertainment Experiences". Qualcomm. Archived from the original on December 15, 2020. Retrieved December 15, 2020.
  96. ^ "Snapdragon 662 Mobile Platform". Qualcomm. Archived from the original on February 22, 2020. Retrieved January 21, 2020.
  97. ^ "Snapdragon 665 Mobile Platform". Qualcomm. Archived from the original on April 12, 2019. Retrieved April 12, 2019.
  98. ^ "Snapdragon 675 Mobile Platform". Qualcomm. Archived from the original on October 23, 2018. Retrieved October 23, 2018.
  99. ^ "Qualcomm Announces Snapdragon 675 - 11nm Mid-Range Cortex A76-Based". anandtech.com. Archived from the original on October 23, 2018. Retrieved October 23, 2018.
  100. ^ https://www.qualcomm.com/products/snapdragon-678-mobile-platform
  101. ^ "Qualcomm Announces First 5G Snapdragon 6-Series Mobile Platform". Qualcomm. Archived from the original on June 17, 2020. Retrieved June 18, 2020.
  102. ^ "Snapdragon 690 5G Mobile Platform". Qualcomm. Archived from the original on June 17, 2020. Retrieved June 17, 2020.
  103. ^ "Qualcomm Introduces New Snapdragon 700 Mobile Platform Series". Qualcomm. Archived from the original on February 27, 2018. Retrieved February 27, 2018.
  104. ^ "More premium features on more devices: How Snapdragon 710 can elevate the mobile experience". Qualcomm. Archived from the original on May 24, 2018. Retrieved May 24, 2018.
  105. ^ "Snapdragon 712: A performance boost delivers premium features in gaming and beyond". Qualcomm. Archived from the original on February 7, 2019. Retrieved February 7, 2019.
  106. ^ "Snapdragon 710 Mobile Platform". Qualcomm. Archived from the original on May 24, 2018. Retrieved May 24, 2018.
  107. ^ "Snapdragon 712 Mobile Platform". Qualcomm. Archived from the original on February 9, 2019. Retrieved February 7, 2019.
  108. ^ "Snapdragon 712 Mobile Platform". Qualcomm. January 22, 2019. Archived from the original on February 9, 2019. Retrieved May 27, 2019.
  109. ^ "Snapdragon 730 and 730G deliver powerful gaming and industry-leading AI". Qualcomm. Archived from the original on April 12, 2019. Retrieved April 12, 2019.
  110. ^ "Qualcomm Announces Snapdragon 732G to Improve High-Tier Mobile Gaming". Qualcomm. Retrieved August 31, 2020.
  111. ^ "Snapdragon 720G Mobile Platform". Qualcomm. Archived from the original on March 11, 2020. Retrieved January 21, 2020.
  112. ^ "Snapdragon 730 Mobile Platform". Qualcomm. Archived from the original on April 13, 2019. Retrieved April 12, 2019.
  113. ^ "Snapdragon 730G Mobile Platform". Qualcomm. Archived from the original on April 13, 2019. Retrieved April 12, 2019.
  114. ^ "Snapdragon 732G Mobile Platform". Qualcomm. Retrieved August 31, 2020.
  115. ^ "Qualcomm Extends its Mobile Leadership by Bringing 5G Experiences to More Users Around the World". Qualcomm. Archived from the original on December 4, 2019. Retrieved December 4, 2019.
  116. ^ Shilov, Anton. "Qualcomm to Update Smartphone GPU Driver Every Quarter, Develops GPU Inspector Tool". www.anandtech.com. Archived from the original on March 27, 2020. Retrieved May 11, 2020.
  117. ^ "Qualcomm Addresses Growing Demand for 5G by Announcing New Snapdragon 768G Mobile Platform". Qualcomm. Archived from the original on May 21, 2020. Retrieved May 11, 2020.
  118. ^ "Qualcomm Adds New 5G Mobile Platform to Snapdragon 7-Series". Qualcomm. Retrieved September 22, 2020.
  119. ^ "Snapdragon 750G 5G Mobile Platform". Qualcomm. Retrieved September 22, 2020.
  120. ^ "Snapdragon 765 5G Mobile Platform". Qualcomm. Archived from the original on December 4, 2019. Retrieved December 4, 2019.
  121. ^ "Snapdragon 765G 5G Mobile Platform". Qualcomm. Archived from the original on December 4, 2019. Retrieved December 4, 2019.
  122. ^ "Snapdragon 768G 5G Mobile Platform". Qualcomm. Archived from the original on May 11, 2020. Retrieved May 11, 2020.
  123. ^ "Snapdragon 780G 5G Mobile Platform" (PDF). Qualcomm. Retrieved March 29, 2021.
  124. ^ a b c Shimpi, Anand Lal. "The Difference Between Snapdragon 800 and 801: Clearing up Confusion". Archived from the original on June 15, 2018. Retrieved June 15, 2018.
  125. ^ Hinum, Klaus. "Qualcomm Snapdragon 800 MSM8974 SoC". Notebookcheck. Retrieved February 6, 2021.
  126. ^ a b c Eassa, Ashraf (June 3, 2014). "A Potential Problem for Qualcomm, Inc". The Motley Fool. Retrieved February 6, 2021.
  127. ^ "The Snapdragon 801 Processor Is a Smooth Step Up from the Snapdragon 800 Processor". Qualcomm. February 23, 2014. Archived from the original on March 16, 2014. Retrieved April 8, 2014.
  128. ^ a b c d e f g "Snapdragon 801 Processor". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  129. ^ a b "Snapdragon 800 vs Snapdragon 801". Android Authority. March 4, 2014. Retrieved February 6, 2021.
  130. ^ "Qualcomm Technologies Announces Next Generation Qualcomm Snapdragon 805 "Ultra HD" Processor". Qualcomm. Archived from the original on February 25, 2016. Retrieved February 19, 2016.
  131. ^ a b c Shimpi, Anand Lal. "Qualcomm's Snapdragon 805: 2.5GHz, 128-bit Memory Interface, D3D11-class Graphics & More". www.anandtech.com. Retrieved January 26, 2021.
  132. ^ Shimpi, Anand Lal. "Qualcomm Snapdragon 805 Performance Preview". www.anandtech.com. Retrieved February 6, 2021.
  133. ^ a b c "SnapDragon 835 : 25% d'autonomie en plus ? - Processeurs - HardWare.fr". Archived from the original on June 13, 2018. Retrieved June 13, 2018.
  134. ^ Frumusanu, Joshua Ho, Andrei. "Understanding Qualcomm's Snapdragon 810: Performance Preview". www.anandtech.com. Retrieved January 23, 2021.
  135. ^ a b c d e "Snapdragon 800 Processor". Qualcomm. Archived from the original on September 15, 2015. Retrieved September 27, 2015.
  136. ^ "The Difference Between Snapdragon 800 and 801: Clearing up Confusion". AnandTech. Archived from the original on April 5, 2014. Retrieved April 8, 2014.
  137. ^ "Xiaomi Mi3". AnandTech. September 5, 2013. Archived from the original on September 6, 2013. Retrieved September 5, 2013.
  138. ^ Samanukorn, Nattida. "Sony announces new flagship Xperia Z2 phone and tablet at MWC | Qualcomm Snapdragon Processors". Qualcomm. Archived from the original on March 2, 2014. Retrieved February 26, 2014.
  139. ^ Ho, Joshua (February 24, 2014). "Samsung Announces Galaxy S5: Initial Thoughts". Anand Tech. Archived from the original on October 26, 2014. Retrieved October 20, 2014.
  140. ^ "MSM8974AC CPU". The Third Media. November 15, 2013. Archived from the original on March 22, 2014. Retrieved April 8, 2014.
  141. ^ "Snapdragon 805 Processor". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  142. ^ "Qualcomm Announces "The Ultimate Connected Computing" Next- Generation Snapdragon 810 and 808 Processors". Qualcomm. Archived from the original on March 4, 2016. Retrieved February 19, 2016.
  143. ^ a b "Snapdragon 808 Processor". Qualcomm. Archived from the original on October 12, 2015. Retrieved September 26, 2015.
  144. ^ Frumusanu, Ryan Smith, Andrei. "The Qualcomm Snapdragon 820 Performance Preview: Meet Kryo". www.anandtech.com. Retrieved February 12, 2021.
  145. ^ "Qualcomm Announces Vulkan API Support on the Adreno 530 GPU". Qualcomm. Archived from the original on October 31, 2016. Retrieved September 19, 2016.
  146. ^ "Get to know the Snapdragon 808 with X10 LTE – Qualcomm". Archived from the original on March 29, 2016. Retrieved April 12, 2016.
  147. ^ a b "Snapdragon 810 Processor". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  148. ^ Frumusanu, Joshua Ho, Andrei. "Understanding Qualcomm's Snapdragon 810: Performance Preview". www.anandtech.com. Retrieved January 23, 2021.
  149. ^ "Snapdragon 810 vs 805: what to expect from Qualcomm's next high-end SoC". Android Authority. January 13, 2015. Retrieved February 6, 2021.
  150. ^ a b "Qualcomm's Snapdragon 808/810". Archived from the original on April 8, 2014. Retrieved April 7, 2014.
  151. ^ Andrei Frumusanu * Ian Cutress. "LG Announces the G4: 5.5-inch QHD with Snapdragon 808". anandtech.com. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  152. ^ "Qualcomm Adreno 420". notebookcheck.net. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  153. ^ "Qualcomm Expands LTE Capabilities in Snapdragon 810 to add Category 9 Carrier Aggregation – Qualcomm". Qualcomm. Archived from the original on June 30, 2015. Retrieved June 28, 2015.
  154. ^ "Devices with Snapdragon 810 and 808 to come in H1 next year". Archived from the original on October 1, 2014. Retrieved September 29, 2014.
  155. ^ Ho, Joshua; Frumusanu, Andrei (February 12, 2015). "Understanding Qualcomm's Snapdragon 810: Performance Preview". Anandtech. Archived from the original on March 2, 2015. Retrieved March 1, 2015.
  156. ^ a b c Ho, Joshua. "Comparing Snapdragon 810 v2 and v2.1: More Memory Bandwidth, Higher Clocks". www.anandtech.com. Archived from the original on December 2, 2019. Retrieved June 16, 2019.
  157. ^ Ho, Joshua. "Comparing Snapdragon 810 v2 and v2.1: More Memory Bandwidth, Higher Clocks". www.anandtech.com. Retrieved January 23, 2021.
  158. ^ a b "Qualcomm announces Snapdragon 820 with Kryo CPU". GSMArena.com. Archived from the original on July 16, 2015. Retrieved July 15, 2015.
  159. ^ a b First Snapdragon 820 powered smartphone announced at CES Archived January 5, 2017, at the Wayback Machine – Qualcomm.com, January 5, 2016
  160. ^ Le Max Pro becomes world's first SD820 smartphone to go on sale Archived January 5, 2017, at the Wayback Machine – GSM Arena, February 23, 2016
  161. ^ a b Snapdragon 821 builds on 820 processor success – Qualcomm.com, July 11, 2016
  162. ^ Ho, Joshua. "Qualcomm Snapdragon 820 Experience: HMP Kryo and Demos". www.anandtech.com. Retrieved January 26, 2021.
  163. ^ Ho, Joshua. "Qualcomm Details Hexagon 680 DSP in Snapdragon 820: Accelerated Imaging". www.anandtech.com. Retrieved January 23, 2021.
  164. ^ "Introducing Quick Charge 3.0". Qualcomm.com. Archived from the original on September 26, 2015. Retrieved September 16, 2015.
  165. ^ "Qualcomm Snapdragon 820: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  166. ^ a b c d Src="https://Img.phon, <img; com's, roid com/2019/01/avartardefaut jpg" width="40" height="40" alt="Avatar" class="avatar avatar-40 wp-user-avatar wp-user-avatar-40 photo avatar-default" /> Par Jean-Louis Pétrod Le 31/08/2016 5 (August 31, 2016). "Snapdragon 821 : plus de puissance et une meilleure expérience VR grâce à Daydream". PhonAndroid (in French). Retrieved January 28, 2021.
  167. ^ a b "Snapdragon 820 Mobile Platform". Qualcomm. Archived from the original on February 22, 2018. Retrieved February 23, 2018.
  168. ^ a b "Snapdragon 821 Mobile Platform". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  169. ^ a b Zimmerman, Steven (October 18, 2016). "A Look at What Has Changed from the Snapdragon 820 to the Snapdragon 821 in the Google Pixel Phones". XDA Developers. Archived from the original on October 21, 2016. Retrieved October 18, 2016.
  170. ^ Zimmerman, Steven (July 24, 2017). "Xiaomi Mi Note 2 XDA Review: A Capable Flagship and a Solid First Step Onto the World Stage". XDA Developers. Archived from the original on July 24, 2017. Retrieved August 3, 2017.
  171. ^ "Get small, go big: Meet the next-gen Snapdragon 835". Qualcomm. November 17, 2016. Archived from the original on November 18, 2016. Retrieved November 17, 2016.
  172. ^ a b c d e f Frumusanu, Andrei. "The Samsung Galaxy S9 and S9+ Review: Exynos and Snapdragon at 960fps". www.anandtech.com. Archived from the original on June 8, 2020. Retrieved May 25, 2019.
  173. ^ "Qualcomm announces the Snapdragon 835 and fully spec-compliant Quick Charge 4". ExtremeTech. November 17, 2016. Archived from the original on November 18, 2016. Retrieved November 18, 2016.
  174. ^ "Qualcomm Snapdragon 835: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  175. ^ "Snapdragon 835 Mobile Platform". Qualcomm. Archived from the original on September 17, 2018. Retrieved February 20, 2018.
  176. ^ "Report: Samsung has exclusive rights to Snapdragon 835 up until Galaxy S8 launch". TrustedReviews. January 24, 2017. Archived from the original on February 23, 2017. Retrieved February 22, 2017.
  177. ^ a b "Qualcomm Launches Technology Innovation with Advancements in the Always Connected PC and its Next-Generation Qualcomm Snapdragon Mobile Platform". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 30, 2018.
  178. ^ "Snapdragon 845: Innovative and intelligent mobility experiences start here". Qualcomm. December 7, 2017. Archived from the original on December 7, 2017. Retrieved December 7, 2017.
  179. ^ a b c "Snapdragon 845 Mobile Platform". Qualcomm. Archived from the original on December 7, 2017. Retrieved December 6, 2017.
  180. ^ Bruno Ferreira (December 6, 2017). "Qualcomm lifts the veil on the Snapdragon 845 SoC". Tech Report. Archived from the original on December 10, 2017. Retrieved December 9, 2017.
  181. ^ a b c d "Product Brief Snapdragon 845" (PDF). Qualcomm. 2018. Archived (PDF) from the original on June 12, 2018. Retrieved June 12, 2018.
  182. ^ Smith, Andrei Frumusanu, Ryan. "The Snapdragon 845 Performance Preview: Setting the Stage for Flagship Android 2018". Archived from the original on June 11, 2018. Retrieved June 12, 2018.
  183. ^ "Snapdragon 845 - Qualcomm - WikiChip". en.wikichip.org. Retrieved January 25, 2021.
  184. ^ "Snapdragon 845's Secure Processing Unit Protects Your Data". xda-developers. December 6, 2017. Archived from the original on June 17, 2018. Retrieved June 17, 2018.
  185. ^ "How can Snapdragon 845 guard your smartphone data like a vault?". Qualcomm. Archived from the original on June 17, 2018. Retrieved June 17, 2018.
  186. ^ "Qualcomm Snapdragon 845: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  187. ^ "Qualcomm Announces New Flagship Snapdragon 855 Mobile Platform - A New Decade of 5G, AI, and XR". Qualcomm. December 5, 2018. Archived from the original on December 6, 2018. Retrieved December 6, 2018.
  188. ^ "Snapdragon 855: The premier mobile platform for a new decade of 5G, AI, and XR". Qualcomm. December 5, 2018. Archived from the original on December 7, 2018. Retrieved December 6, 2018.
  189. ^ Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed". www.anandtech.com. Archived from the original on June 8, 2020. Retrieved May 25, 2019.
  190. ^ a b "Snapdragon 855 - Qualcomm - WikiChip". en.wikichip.org. Retrieved January 25, 2021.
  191. ^ "Qualcomm Snapdragon 855: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  192. ^ "Qualcomm Snapdragon 855: An overview of its CPU, GPU, ISP, and DSP". xda-developers. December 5, 2018. Archived from the original on December 6, 2018. Retrieved December 6, 2018.
  193. ^ Gruber, Andrew (July 8, 2019). "Mobile GPU Power and Performance". High-Performance Graphics. Qualcomm. Archived from the original on July 20, 2019. Retrieved July 20, 2019.
  194. ^ a b Shilov, Anton. "Qualcomm to Update Smartphone GPU Driver Every Quarter, Develops GPU Inspector Tool". www.anandtech.com. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  195. ^ Frumusanu, Andrei. "The Qualcomm Snapdragon 855 Pre-Dive: Going Into Detail on 2019's Flagship Android SoC". www.anandtech.com. Archived from the original on January 27, 2019. Retrieved January 27, 2019.
  196. ^ a b "Qualcomm Snapdragon 888 deep dive: Everything you need to know". Android Authority. December 2, 2020. Retrieved January 23, 2021.
  197. ^ 01net. "Snapdragon 855 : tout ce que vous devez savoir sur le nouveau monstre de Qualcomm". 01net (in French). Archived from the original on December 6, 2018. Retrieved January 28, 2019.
  198. ^ "Snapdragon 855 Mobile Platform Product Brief" (PDF). Archived (PDF) from the original on January 27, 2019. Retrieved January 27, 2019.
  199. ^ "Qualcomm Announces Snapdragon 855 Plus Mobile Platform". July 15, 2019. Archived from the original on July 4, 2020. Retrieved July 18, 2020.
  200. ^ "Snapdragon 855 Mobile Platform". Qualcomm. Archived from the original on December 7, 2018. Retrieved December 6, 2018.
  201. ^ a b "Snapdragon X50 5G Modem". Qualcomm. Archived from the original on August 10, 2019. Retrieved August 11, 2019.
  202. ^ a b "Snapdragon 855+/860 Mobile Platform". Qualcomm. Archived from the original on June 1, 2020. Retrieved July 18, 2020.
  203. ^ "Qualcomm Introduces the World's Most Advanced 5G Mobile Platform". Qualcomm. December 4, 2019. Archived from the original on December 4, 2019. Retrieved December 4, 2019.
  204. ^ Frumusanu, Andrei (December 4, 2019). "Qualcomm Announces Snapdragon 865 and 765(G): 5G For All in 2020, All The Details". www.anandtech.com. Anandtech. Archived from the original on March 6, 2020. Retrieved January 31, 2020.
  205. ^ Friedman, Alan. "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month". Phone Arena. Retrieved January 25, 2021.
  206. ^ "Xiaomi Mi 10 Teardown Analysis | TechInsights". www.techinsights.com. Retrieved February 19, 2021.
  207. ^ a b Frumusanu, Andrei (December 4, 2019). "Qualcomm Announces Snapdragon 865 and 765(G): 5G For All in 2020, All The Details (Page 2)". www.anandtech.com. Anandtech. Archived from the original on March 6, 2020. Retrieved January 31, 2020.
  208. ^ "Qualcomm Snapdragon 865: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  209. ^ "Qualcomm Announces Snapdragon 865 Plus 5G Mobile Platform". Qualcomm. July 8, 2020. Archived from the original on July 9, 2020. Retrieved July 9, 2020.
  210. ^ "Qualcomm Announces Boosted Snapdragon 870 5G Mobile Platform". Qualcomm. Retrieved January 19, 2021.
  211. ^ "Snapdragon 865 5G Mobile Platform". Qualcomm. Archived from the original on December 4, 2019. Retrieved December 4, 2019.
  212. ^ a b "Snapdragon X55 5G Modem". Qualcomm. Archived from the original on August 17, 2019. Retrieved August 11, 2019.
  213. ^ "Snapdragon 865+ 5G Mobile Platform". Qualcomm. Archived from the original on July 8, 2020. Retrieved July 8, 2020.
  214. ^ "Snapdragon 870 5G Mobile Platform". Qualcomm. Retrieved January 19, 2020.
  215. ^ "Qualcomm Redefines Premium at Snapdragon Tech Summit Digital 2020". www.qualcomm.com. SAN DIEGO: Qualcomm. December 1, 2020. Retrieved December 3, 2020.
  216. ^ "Qualcomm Redefines Premium with the Flagship Snapdragon 888 5G Mobile Platform". www.qualcomm.com. SAN DIEGO: Qualcomm. December 2, 2020. Retrieved December 3, 2020.
  217. ^ "Qualcomm Snapdragon 888 Mobile Platform Product Brief". www.qualcomm.com. Qualcomm. November 30, 2020. Retrieved December 3, 2020.
  218. ^ "Snapdragon 888 5G Mobile Platform". www.qualcomm.com. Qualcomm. November 25, 2020. Retrieved December 3, 2020.
  219. ^ Patel, Idrees (December 2, 2020). "The Qualcomm Snapdragon 888 will power flagship 5G phones in 2021 – Here's what you need to know". www.xda-developers.com. Retrieved December 3, 2020.
  220. ^ Frumusanu, Andrei (December 2, 2020). "Qualcomm Details The Snapdragon 888: 3rd Gen 5G & Cortex-X1 on 5nm". www.anandtech.com. Retrieved December 3, 2020.
  221. ^ Frumusanu, Andrei. "The Snapdragon 888 vs The Exynos 2100: Cortex-X1 & 5nm - Who Does It Better?". www.anandtech.com. Retrieved February 12, 2021.
  222. ^ "Qualcomm Snapdragon 888: specs and benchmarks". NanoReview.net. Retrieved February 7, 2021.
  223. ^ Frumusanu, Andrei. "Qualcomm Details The Snapdragon 888: 3rd Gen 5G & Cortex-X1 on 5nm". www.anandtech.com. Retrieved January 21, 2021.
  224. ^ Frumusanu, Andrei. "Qualcomm Details The Snapdragon 888: 3rd Gen 5G & Cortex-X1 on 5nm". www.anandtech.com. Retrieved February 12, 2021.
  225. ^ Frumusanu, Andrei. "Qualcomm Details The Snapdragon 888: 3rd Gen 5G & Cortex-X1 on 5nm". www.anandtech.com. Retrieved January 23, 2021.
  226. ^ 01net. "Snapdragon 888 : pourquoi son processeur d'image Spectra 580 est une révolution". 01net (in French). Retrieved February 6, 2021.
  227. ^ "Qualcomm Announces Snapdragon 850 Mobile Compute Platform for Windows 10 PCs". Qualcomm. June 4, 2018. Archived from the original on June 13, 2018. Retrieved June 5, 2018.
  228. ^ "Qualcomm Introduces the World's First 7 Nanometer PC Platform". Qualcomm. December 6, 2018. Archived from the original on December 7, 2018. Retrieved December 6, 2018.
  229. ^ "Snapdragon 8cx: The most extreme Snapdragon. Ever". Qualcomm. December 6, 2018. Archived from the original on December 7, 2018. Retrieved December 6, 2018.
  230. ^ "Qualcomm Snapdragon Powered Always On, Always Connected PC Portfolio Expansion Disrupts Entry, Mainstream, and Premium Mobile PC Industries". Qualcomm. December 5, 2019. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  231. ^ "Qualcomm Drives 5G PC Ecosystem Expansion with Next Generation Compute Platform, Powering New 2-in-1 Laptops from OEMs Including Acer in 2020". Qualcomm. September 3, 2020.
  232. ^ "Snapdragon 835 Mobile PC Platform". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  233. ^ "Snapdragon 850 Mobile Compute Platform". Qualcomm. Archived from the original on June 5, 2018. Retrieved June 5, 2018.
  234. ^ "Snapdragon 7c Compute Platform". Qualcomm. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  235. ^ "Snapdragon 8c Compute Platform". Qualcomm. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  236. ^ "Snapdragon 8cx Compute Platform". Qualcomm. Archived from the original on December 7, 2018. Retrieved December 6, 2018.
  237. ^ "Snapdragon 8cx Gen 2 5G Compute Platform". Qualcomm. Retrieved September 3, 2020.
  238. ^ "Surface Pro X: Cristiano Amon shares how Qualcomm and Microsoft are redefining mobile computing". Qualcomm. October 2, 2019. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  239. ^ "All we Know About Microsoft's Custom SQ1 Processor Inside the Surface Pro X". Tom's Hardware. October 2, 2019. Retrieved October 4, 2019.
  240. ^ "The Surface Pro X gets better: Qualcomm and Microsoft continue redefining mobile computing". Qualcomm. October 1, 2020.
  241. ^ "LG Watch Style Wearable with a Snapdragon Wear 2100 processor – Qualcomm". Archived from the original on April 20, 2017. Retrieved April 19, 2017.
  242. ^ "Qualcomm Helps to accelerate 4G Kid Watch Segment with Dedicated Snapdragon Wear 2500 Platform | Qualcomm". Qualcomm. Archived from the original on June 27, 2018. Retrieved June 27, 2018.
  243. ^ "Qualcomm Snapdragon Wear 3100 Platform Supports New Ultra-Low Power System Architecture for Next Generation Smartwatches". Qualcomm. Archived from the original on September 11, 2018. Retrieved September 10, 2018.
  244. ^ "Qualcomm Snapdragon Wear 4100 Platforms Enable New and Enhanced User Experiences to Fuel Accelerated Wearables Growth". Qualcomm. June 30, 2020. Archived from the original on July 2, 2020. Retrieved June 30, 2020.
  245. ^ "Snapdragon Wear 1100 Processor". Archived from the original on September 10, 2017. Retrieved September 10, 2017.
  246. ^ "Snapdragon Wear 1100 Product Brief" (PDF). Archived (PDF) from the original on August 17, 2017. Retrieved August 16, 2017.
  247. ^ "Snapdragon Wear 1200 Processor". Archived from the original on September 10, 2017. Retrieved September 10, 2017.
  248. ^ "Snapdragon Wear 1200 Product Brief" (PDF). Archived (PDF) from the original on August 17, 2017. Retrieved August 17, 2017.
  249. ^ "MSM8909w Processor". Qualcomm. Archived from the original on July 22, 2018. Retrieved July 21, 2018.
  250. ^ "Snapdragon Wear 2100 Processor". Qualcomm. Archived from the original on April 9, 2017. Retrieved April 19, 2017.
  251. ^ "Snapdragon Wear 2500 Platform". Qualcomm. Archived from the original on July 22, 2018. Retrieved July 21, 2018.
  252. ^ "Snapdragon Wear 3100 Platform". Qualcomm. Archived from the original on September 11, 2018. Retrieved September 10, 2018.
  253. ^ "Snapdragon Wear 2100 Product Brief" (PDF). Archived (PDF) from the original on June 11, 2017. Retrieved August 16, 2017.
  254. ^ "Snapdragon Wear 4100+ Platform". Qualcomm. June 24, 2020. Archived from the original on June 30, 2020. Retrieved June 30, 2020.
  255. ^ "Snapdragon Wear 4100 Platform Product Brief" (PDF). Archived (PDF) from the original on July 1, 2020.
  256. ^ "CES 2016: The future of connected cars". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  257. ^ "Qualcomm Introduces Snapdragon Automotive Solutions for Connected In-Car Infotainment". Qualcomm. Archived from the original on November 8, 2014. Retrieved April 8, 2014.
  258. ^ "Snapdragon 820 Automotive processors debut at CES 2016". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  259. ^ "Snapdragon 602A". Qualcomm. Archived from the original on February 1, 2018. Retrieved February 19, 2018.
  260. ^ "Snapdragon 820A". Qualcomm. October 2, 2018. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  261. ^ "Snapdragon 600E and 410E processors help IoT manufacturers design, build, and scale". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  262. ^ "Qualcomm Snapdragon 600E and 410E Designed for Embedded Computing, Internet of Things Applications Now Widely Available". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  263. ^ "Qualcomm Extends its Embedded Computing Portfolio and Brings its Premium Tier Processors for Cutting-Edge IoT Applications". Qualcomm. February 21, 2018. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  264. ^ "Snapdragon 410E Embedded Platform". Qualcomm. October 2, 2018. Archived from the original on February 1, 2018. Retrieved February 23, 2018.
  265. ^ "Snapdragon 600E Embedded Platform". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  266. ^ "Snapdragon 800 Processor for Embedded". Qualcomm. Archived from the original on June 30, 2018. Retrieved June 30, 2018.
  267. ^ "Snapdragon 810 Processor for Embedded". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  268. ^ "Snapdragon 820E Embedded Platform". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  269. ^ "Qualcomm Vision Intelligence Platform". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  270. ^ "Qualcomm Unveils the Vision Intelligence Platform Purpose-built for IoT Devices Powered by Latest Advances in Camera, AI and Computer Vision". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  271. ^ "Made for the IoT: Meet the Qualcomm Vision Intelligence Platform". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  272. ^ "Qualcomm QCS603 SoC". Qualcomm. Archived from the original on August 1, 2018. Retrieved July 21, 2018.
  273. ^ "Qualcomm QCS605 SoC". Qualcomm. Archived from the original on August 1, 2018. Retrieved July 21, 2018.
  274. ^ a b c "Qualcomm Smart Audio Platform". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  275. ^ "Qualcomm Announces Highly Flexible Smart Speaker Platform with Unique Combination of Support for Voice Assistants and Multi-Room Streaming Audio Capability". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  276. ^ "Qualcomm 212 Home Hub Platform". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  277. ^ "Qualcomm 624 Home Hub Platform". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  278. ^ "Qualcomm Announces New Home Hub Platforms Supporting Android Things to Bring the Google Assistant into Households Everywhere". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  279. ^ "Qualcomm Launches New, AI-Enabled Highly Integrated SoCs and Dedicated Smart Speaker Platform to Help Drive the Evolution of Smart Audio". Qualcomm. March 19, 2019. Archived from the original on May 16, 2020. Retrieved May 11, 2019.
  280. ^ "APQ8009 Processor". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  281. ^ "SDA212 SOM". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  282. ^ "APQ8053 Processor". Qualcomm. Archived from the original on July 21, 2018. Retrieved July 21, 2018.
  283. ^ "SDA624 SOM". Qualcomm. Archived from the original on February 24, 2018. Retrieved February 23, 2018.
  284. ^ "QCS403". Qualcomm. February 20, 2019. Archived from the original on July 11, 2019. Retrieved May 11, 2019.
  285. ^ "QCS404". Qualcomm. February 20, 2019. Archived from the original on July 11, 2019. Retrieved May 11, 2019.
  286. ^ "QCS405". Qualcomm. February 20, 2019. Archived from the original on May 2, 2020. Retrieved May 11, 2019.
  287. ^ "QCS407". Qualcomm. February 20, 2019. Archived from the original on July 11, 2019. Retrieved May 11, 2019.
  288. ^ Smith, Ryan. "Qualcomm Announces XR1 Platform: Dedicated SoC for VR/XR Headsets, Coming Late 2018". www.anandtech.com. Archived from the original on October 14, 2019. Retrieved May 19, 2019.
  289. ^ "IQualcomm Technologies Announces the World's First 5G XR Platform". Qualcomm. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  290. ^ "Snapdragon XR1 Platform". Qualcomm. October 2, 2018. Archived from the original on April 30, 2020. Retrieved May 19, 2019.
  291. ^ "Snapdragon XR2 5G Platform". Qualcomm. Archived from the original on December 6, 2019. Retrieved December 6, 2019.
  292. ^ "Amazon.com, Qualcomm to put Alexa assistant in more headphones". Reuters. October 23, 2018. Archived from the original on October 4, 2019. Retrieved May 19, 2019.
  293. ^ Li, Abner (May 9, 2019). "Google, Qualcomm working to help create more Fast Pair and Assistant headphones". 9to5Google. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  294. ^ "Qualcomm wants to triple Bluetooth headphone listening time". Android Authority. January 8, 2018. Archived from the original on December 5, 2019. Retrieved May 19, 2019.
  295. ^ a b c "Launch Studio - D046352 Listing Details". launchstudio.bluetooth.com. Archived from the original on January 29, 2020. Retrieved January 29, 2020.
  296. ^ a b c "Launch Studio - D046351 Listing Details". launchstudio.bluetooth.com. Archived from the original on January 29, 2020. Retrieved January 29, 2020.
  297. ^ "LE Audio: A new age of Bluetooth audio sharing". Qualcomm. January 27, 2020. Archived from the original on January 29, 2020. Retrieved January 29, 2020.
  298. ^ "New Ultra-Low Power Bluetooth Audio SoCs From Qualcomm Improve Truly Wireless Sound". Qualcomm. March 25, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  299. ^ "New audio technologies help bring out the best in truly wireless earbuds". Qualcomm. March 25, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  300. ^ "QCC3001". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  301. ^ "QCC3002". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  302. ^ "QCC3003". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  303. ^ "QCC3004". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  304. ^ "QCC3005". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  305. ^ "QCC3020". Qualcomm. October 2, 2018. Archived from the original on May 24, 2020. Retrieved May 19, 2019.
  306. ^ "QCC3021". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  307. ^ "QCC3024". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  308. ^ "QCC3026". Qualcomm. October 2, 2018. Archived from the original on January 15, 2020. Retrieved May 19, 2019.
  309. ^ "QCC3031". Qualcomm. October 2, 2018. Archived from the original on March 27, 2020. Retrieved May 19, 2019.
  310. ^ "QCC3034". Qualcomm. October 2, 2018. Archived from the original on March 27, 2020. Retrieved May 19, 2019.
  311. ^ "QCC3040 | Entry-Level TrueWireless Bluetooth Audio BGA SoC". Qualcomm. March 17, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  312. ^ "QCC3046 | Mid-Level TrueWireless Bluetooth Audio WLCSP". Qualcomm. March 19, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  313. ^ "QCC5120". Qualcomm. October 2, 2018. Archived from the original on July 11, 2019. Retrieved May 19, 2019.
  314. ^ "QCC5121". Qualcomm. October 2, 2018. Archived from the original on March 27, 2020. Retrieved May 19, 2019.
  315. ^ "QCC5124". Qualcomm. October 2, 2018. Archived from the original on January 29, 2020. Retrieved May 19, 2019.
  316. ^ "QCC5125". Qualcomm. October 2, 2018. Archived from the original on January 29, 2020. Retrieved May 19, 2019.
  317. ^ "QCC5141 Chipset | Premium-tier WLCSP package for TrueWireless Earbuds". Qualcomm. March 19, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  318. ^ "QCC5144 Chipset | Premium BGA package for TrueWireless Earbuds". Qualcomm. March 19, 2020. Archived from the original on March 27, 2020. Retrieved March 27, 2020.

External links[edit]

  • Media related to Snapdragon (microprocessor) at Wikimedia Commons
  • Official website, product page