Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
Внутренний вид ATX SMPS : внизу
A: входная фильтрация электромагнитных помех и мостовой выпрямитель;
B: конденсаторы входного фильтра;
«Между» B и C: теплоотвод первичной стороны;
C: трансформатор;
Между C и D: радиатор вторичной стороны;
D: катушка выходного фильтра;
E: конденсаторы выходного фильтра.  
Катушка и большой желтый конденсатор под E являются дополнительными входными фильтрующими компонентами, которые устанавливаются непосредственно на входном разъеме питания и не являются частью основной печатной платы.
Регулируемый импульсный источник питания для лабораторного использования

Импульсный источник питания ( переключение режима питания , переключатель режима питания , импульсный источник питания , SMPS , или коммутатор ) представляет собой электронный блок питания , который включает в себя импульсный стабилизатор , чтобы преобразовывать электрическую энергию эффективно.

Подобно другим источникам питания, SMPS передает мощность от источника постоянного или переменного тока (часто от сети , см. Адаптер переменного тока ) на нагрузки постоянного тока, такие как персональный компьютер , при этом преобразуя характеристики напряжения и тока . В отличие от линейного источника питания , проходной транзистор импульсного источника питания постоянно переключается между состояниями с малым рассеиванием , полным включением и полным выключением и очень мало времени проводит в переходах с высоким рассеиванием, что сводит к минимуму потери энергии. Гипотетический идеальный импульсный источник питания не рассеивает мощность. Регулирование напряжения достигается за счет изменения отношения времени включения / выключения (также известного как рабочие циклы). Напротив, линейный источник питания регулирует выходное напряжение путем постоянного рассеивания мощности в проходном транзисторе . Эта более высокая эффективность преобразования мощности является важным преимуществом импульсного источника питания. Импульсные источники питания также могут быть значительно меньше и легче линейных из-за меньшего размера и веса трансформатора.

Импульсные регуляторы используются в качестве замены линейных регуляторов, когда требуется более высокий КПД, меньший размер или меньший вес. Однако они более сложные; коммутационные токи могут вызвать проблемы с электрическими помехами, если их не подавить должным образом, а простые конструкции могут иметь низкий коэффициент мощности .

История [ править ]

1836 г.
В индукционных катушках используются переключатели для генерации высокого напряжения.
1910 г.
Система зажигания с индуктивным разрядом, изобретенная Чарльзом Ф. Кеттерингом и его компанией Dayton Engineering Laboratories Company (Delco), запускается в производство для Cadillac. [1] Система зажигания Кеттеринга представляет собой версию повышающего преобразователя с механическим переключением; трансформатор - катушка зажигания. Варианты этой системы зажигания использовались во всех недизельных двигателях внутреннего сгорания до 1960-х годов, когда ее начали заменять сначала твердотельные версии с электронным переключением, а затем системы зажигания емкостного разряда .
1926 г.
23 июня британский изобретатель Филип Рэй Курси подает заявку на патент в своей стране и Соединенных Штатах на свой «Электрический конденсатор». [2] [3] В патенте , помимо прочего, упоминается высокочастотная сварка [4] и печи. [3]
c.  1932 г.
Электромеханические реле используются для стабилизации выходного напряжения генераторов. См. Регулятор напряжения № Электромеханические регуляторы . [5] [6]
c. 1936 г.
Автомобильные радиоприемники использовали электромеханические вибраторы, чтобы преобразовать питание от аккумуляторной батареи 6 В до подходящего напряжения B + для электронных ламп. [7]
1959 г.
МОП - транзистор (металл-оксид-полупроводник полевой транзистор) изобретена Mohamed М. Atalla и Давон Канг в Bell Labs . [8] МОП - транзистор мощности впоследствии стал наиболее широко используемой мощностью устройством для импульсных источников питания. [9]
1959 г.
Транзисторная система питания преобразователя колебаний и выпрямления. Патент США 3040271 подан Джозефом Э. Мерфи и Фрэнсисом Дж. Старзеком из компании General Motors [10].
1960-е
Управляющий компьютер Apollo , разработанный в начале 1960-х годов приборной лабораторией Массачусетского технологического института для амбициозных полетов НАСА на Луну (1966-1972), включал в себя ранние импульсные источники питания. [11]
c. 1967
Боб Видлар из Fairchild Semiconductor разрабатывает стабилизатор напряжения µA723 IC. Одно из его применений - в качестве импульсного регулятора. [12]
1970 г.
Tektronix начинает использовать высокоэффективные блоки питания в своих осциллографах серии 7000, выпускавшихся примерно с 1970 по 1995 год. [13] [14] [15] [16]
1970 г.
Роберт Бошерт разрабатывает более простые и недорогие схемы. К 1977 году компания Boschert Inc. выросла до 650 человек. [17] [18] После серии слияний, поглощений и выделений (Computer Products, Zytec, Artesyn, Emerson Electric) компания теперь является частью Advanced Energy . [19] [20] [21]
1972 г.
HP-35 , первый карманный калькулятор Hewlett-Packard , представляет собой транзисторный импульсный источник питания для светодиодов , часов, таймингов, ПЗУ и регистров. [22]
1973 г.
Xerox использует импульсные блоки питания в миникомпьютере Alto [23]
1976 г.
Роберт Маммано, соучредитель Silicon General Semiconductors, разрабатывает первую интегральную схему для управления SMPS, модель SG1524. [17] После серии слияний и поглощений (Linfinity, Symetricom, Microsemi ) компания стала частью Microchip Technology . [24]
1977 г.
Apple II разработан с импульсным блоком питания. « Род Холт был приглашен в качестве инженера по продукту, и в Apple II было несколько недостатков, которые никогда не оглашались. Одна вещь, которую Холт заслуживает, состоит в том, что он создал импульсный источник питания, который позволил нам сделать очень легкий компьютер ». [25]
1980 г.
Генератор синтезированных сигналов HP8662A 10 кГц - 1,28 ГГц работал с импульсным источником питания. [26]

Объяснение [ править ]

В линейном источнике питания (не SMPS) используется линейный регулятор для обеспечения желаемого выходного напряжения путем рассеивания избыточной мощности в омических потерях (например, в резисторе или в области коллектор-эмиттер проходного транзистора в его активном режиме). Линейный регулятор регулирует либо выходное напряжение, либо ток, рассеивая избыточную электрическую мощность в виде тепла , и, следовательно, его максимальный КПД по мощности равен выходному напряжению / входному напряжению, поскольку разница в напряжении теряется.

Напротив, SMPS изменяет выходное напряжение и ток, переключая в идеале элементы хранения без потерь, такие как катушки индуктивности и конденсаторы , между различными электрическими конфигурациями. Идеальные переключающие элементы (приближенные к транзисторам, работающим вне своего активного режима) не имеют сопротивления в состоянии «включено» и не пропускают ток в «выключенном состоянии», поэтому преобразователи с идеальными компонентами будут работать со 100% -ным КПД (т.е. к нагрузке; мощность не теряется в виде рассеиваемого тепла). На самом деле этих идеальных компонентов не существует, поэтому импульсный источник питания не может быть эффективен на 100%, но это все же значительное повышение эффективности по сравнению с линейным регулятором.

Базовая схема повышающего преобразователя

Например, если источник постоянного тока, катушка индуктивности, переключатель и соответствующее электрическое заземление размещены последовательно, а переключатель приводится в действие прямоугольной волной , размах напряжения формы волны, измеренной на переключателе, может превышать входное напряжение от источника постоянного тока. Это связано с тем, что катушка индуктивности реагирует на изменения тока, создавая собственное напряжение, чтобы противостоять изменению тока, и это напряжение добавляется к напряжению источника, пока переключатель разомкнут. Если комбинация диода и конденсатора размещается параллельно переключателю, пиковое напряжение может сохраняться в конденсаторе, и конденсатор может использоваться в качестве источника постоянного тока с выходным напряжением, превышающим напряжение постоянного тока, управляющее схемой. Этот повышающий преобразователь действует какповышающий трансформатор для сигналов постоянного тока. Понижающий преобразователь-наддув работает аналогичным образом, но дает выходное напряжение , которое является противоположным по полярности к входному напряжению. Существуют и другие понижающие схемы для увеличения среднего выходного тока с уменьшением напряжения.

В SMPS поток выходного тока зависит от входного сигнала мощности, используемых элементов хранения и топологии схемы, а также от используемого шаблона (например, широтно-импульсная модуляция с регулируемым рабочим циклом ) для управления переключающими элементами. Спектральная плотность этих переключающих сигналов имеет энергия концентрируется на относительно высоких частотах. Таким образом, переходные процессы переключения и пульсации, вносимые в выходные сигналы, могут быть отфильтрованы с помощью небольшого LC-фильтра .

Преимущества и недостатки [ править ]

Основным преимуществом импульсного источника питания является более высокий КПД ( до 96% ) по сравнению с линейными регуляторами, поскольку переключающий транзистор рассеивает мало энергии, работая в качестве переключателя.

Другие преимущества включают меньший размер, низкий уровень шума и меньший вес за счет исключения тяжелых трансформаторов сетевой частоты, а также сопоставимое тепловыделение. Потери мощности в режиме ожидания часто намного меньше, чем у трансформаторов. Трансформатор в импульсном источнике питания также меньше, чем традиционный трансформатор сетевой частоты (50 Гц или 60 Гц в зависимости от региона), и поэтому требует меньшего количества дорогостоящего сырья, такого как медь.

К недостаткам относятся большая сложность, генерация высокой амплитуды и высокочастотной энергии, которую фильтр нижних частот должен блокировать, чтобы избежать электромагнитных помех (EMI), пульсации напряжения на частоте переключения и их гармонических частот .

Очень недорогие SMPS могут передавать электрические коммутационные помехи обратно в линию электропитания, вызывая помехи для устройств, подключенных к той же фазе, например, аудио / видео оборудования. Номера для коэффициента мощности с коррекцией SMPSs также вызывает гармонические искажения.

Сравнение SMPS и линейных источников питания [ править ]

Доступны два основных типа регулируемых источников питания: SMPS и линейные. В следующей таблице сравниваются линейные регулируемые и нерегулируемые источники переменного тока в постоянный с импульсными регуляторами в целом:

Теория работы [ править ]

Блок-схема ИИП переменного / постоянного тока с питанием от сети и регулировкой выходного напряжения

Входной выпрямительный каскад [ править ]

Переменный ток, полуволновые и двухполупериодные выпрямленные сигналы

Если SMPS имеет вход переменного тока, то первым этапом является преобразование входа в постоянный ток. Это называется исправлением . SMPS с входом постоянного тока не требует этого этапа. В некоторых блоках питания (в основном компьютерные блоки питания ATX), схему выпрямителя можно настроить как удвоитель напряжения путем добавления переключателя, управляемого вручную или автоматически. Эта функция позволяет работать от источников питания, которые обычно имеют напряжение 115 или 230 В. Выпрямитель вырабатывает нерегулируемое постоянное напряжение, которое затем передается на большой конденсатор фильтра. Ток, потребляемый этой схемой выпрямителя из сети, возникает короткими импульсами вокруг пиков переменного напряжения. Эти импульсы имеют значительную высокочастотную энергию, что снижает коэффициент мощности. Чтобы исправить это, многие новые SMPS будут использовать специальную схему PFC , чтобы входной ток повторял синусоидальную форму входного напряжения переменного тока, корректируя коэффициент мощности. Источники питания, которые используют активную коррекцию коэффициента мощности, обычно имеют автоматический выбор диапазона, поддерживая входные напряжения от~ 100–250 В переменного тока , без переключателя входного напряжения.

SMPS, предназначенный для входа переменного тока, обычно может работать от источника постоянного тока, поскольку постоянный ток будет проходить через выпрямитель без изменений. [31] Если источник питания рассчитан на 115 В переменного тока и не имеет переключателя напряжения, требуемое напряжение постоянного тока будет 163 В постоянного тока (115 × √2). Однако такой тип использования может быть вредным для выпрямительного каскада, поскольку при полной нагрузке будет использоваться только половина диодов выпрямителя. Это может привести к перегреву этих компонентов и их преждевременному выходу из строя. С другой стороны, если в блоке питания есть переключатель напряжения, основанный на схеме Делона , на 115/230 В (компьютерные блоки питания ATX обычно относятся к этой категории), переключатель выбора должен быть помещен в положение 230 В.положение, и требуемое напряжение будет 325 В постоянного тока (230 × √2). Диоды в этом типе источника питания прекрасно справляются с постоянным током, потому что они рассчитаны на удвоение номинального входного тока при работе в режиме 115 В из-за работы удвоителя напряжения. Это связано с тем, что удвоитель во время работы использует только половину мостового выпрямителя и пропускает через него в два раза больше тока. [32]

Инверторный каскад [ править ]

Этот раздел относится к блоку, обозначенному на схеме прерывателю .

Инверторный каскад преобразует постоянный ток, будь то непосредственно со входа или с выпрямительного каскада, описанного выше, в переменный ток, пропуская его через генератор мощности, выходной трансформатор которого очень мал с небольшим количеством обмоток с частотой в десятки или сотни килогерц . Частота обычно выбирается выше 20 кГц, чтобы люди не слышали ее. Коммутация реализована в виде многокаскадного (для достижения высокого усиления) усилителя MOSFET . МОП-транзисторы - это тип транзисторов с низким сопротивлением в открытом состоянии и высокой пропускной способностью по току.

Преобразователь напряжения и выходной выпрямитель [ править ]

Если требуется изолировать выход от входа, как это обычно бывает в источниках питания от сети, инвертированный переменный ток используется для управления первичной обмоткой высокочастотного трансформатора . Это преобразует напряжение на вторичной обмотке вверх или вниз до требуемого уровня на выходе. Этой цели служит выходной трансформатор на блок-схеме.

Если требуется выход постоянного тока, выходной ток переменного тока от трансформатора выпрямляется. Для выходных напряжений выше десяти вольт или около того обычно используются обычные кремниевые диоды. Для более низких напряжений в качестве выпрямительных элементов обычно используются диоды Шоттки ; они обладают преимуществами более быстрого восстановления, чем кремниевые диоды (что позволяет работать с низкими потерями на более высоких частотах), и меньшего падения напряжения при проводимости. Для еще более низких выходных напряжений МОП-транзисторы могут использоваться в качестве синхронных выпрямителей ; По сравнению с диодами Шоттки, они имеют даже меньшее падение напряжения в проводящем состоянии.

Выпрямленный выходной сигнал затем сглаживается фильтром, состоящим из катушек индуктивности и конденсаторов . Для более высоких частот переключения необходимы компоненты с более низкой емкостью и индуктивностью.

В более простых неизолированных источниках питания вместо трансформатора используется индуктор. К этому типу относятся повышающие преобразователи , понижающие преобразователи и повышающие преобразователи . Они относятся к простейшему классу преобразователей с одним входом и одним выходом, в которых используется один индуктор и один активный переключатель. Понижающий преобразователь снижает входное напряжение прямо пропорционально отношению времени проводимости к общему периоду переключения, называемому рабочим циклом. Например, идеальный понижающий преобразователь со входом 10 В, работающий при рабочем цикле 50%, будет производить среднее выходное напряжение 5 В. Контур управления с обратной связью используется для регулирования выходного напряжения путем изменения рабочего цикла для компенсации колебаний входного сигнала. Напряжение. Выходное напряжение повышающего преобразователявсегда больше входного напряжения, а выходное напряжение повышающего и понижающего напряжения инвертируется, но может быть больше, равно или меньше величины входного напряжения. Существует множество вариаций и расширений этого класса преобразователей, но эти три составляют основу почти всех изолированных и неизолированных преобразователей постоянного тока в постоянный. Добавляя второй индуктор, можно реализовать преобразователи converuk и SEPIC , или, добавив дополнительные активные переключатели, можно реализовать различные мостовые преобразователи.

Другие типы SMPSs использовать конденсатор - диод умножителя напряжения вместо катушки индуктивности и трансформаторов. В основном они используются для генерации высокого напряжения при малых токах ( генератор Кокрофта-Уолтона ). Вариант с низким напряжением называется зарядовым насосом .

Регламент [ править ]

Это зарядное устройство для небольшого устройства, такого как мобильный телефон, представляет собой простой автономный импульсный источник питания с европейской вилкой. Простая схема имеет всего два транзистора, оптопару и выпрямительные диоды в качестве активных компонентов .

Обратная цепь контролирует выходное напряжение и сравнивает его с опорным напряжением. В зависимости от конструкции и требований безопасности контроллер может содержать изолирующий механизм (например, оптопару ), чтобы изолировать его от выхода постоянного тока. Коммутационные источники в компьютерах, телевизорах и видеомагнитофонах имеют эти оптопары для жесткого контроля выходного напряжения.

Регуляторы без обратной связи не имеют цепи обратной связи. Вместо этого они полагаются на подачу постоянного напряжения на вход трансформатора или катушки индуктивности и предполагают, что выход будет правильным. Регулируемые конструкции компенсируют импеданс трансформатора или катушки. Монополярные конструкции также компенсируют магнитный гистерезис сердечника.

Цепи обратной связи требуется питание для работы, прежде чем она сможет генерировать мощность, поэтому добавляется дополнительный некоммутируемый источник питания для режима ожидания.

Конструкция трансформатора [ править ]

Любой импульсный источник питания, который получает питание от сети переменного тока (так называемый «автономный» преобразователь [33] ), требует трансформатора для гальванической развязки . Некоторые преобразователи постоянного тока в постоянный также могут включать в себя трансформатор, хотя в этих случаях изоляция может быть не критичной. Трансформаторы SMPS работают на высокой частоте. Большая часть экономии средств (и экономии места) в автономных источниках питания достигается за счет меньшего размера высокочастотного трансформатора по сравнению с трансформаторами 50/60 Гц, которые использовались ранее. Есть дополнительные компромиссы с дизайном. [34]

Напряжение на клеммах трансформатора пропорционально произведению площади сердечника, магнитного потока и частоты. Используя гораздо более высокую частоту, можно значительно уменьшить площадь сердечника (и, следовательно, массу сердечника). Однако потери в сердечнике увеличиваются на более высоких частотах. В сердечниках обычно используется ферритовый материал, который имеет низкие потери на высоких частотах и ​​высокую плотность магнитного потока. Ламинированные железные сердечники низкочастотных (<400 Гц) трансформаторов будут иметь недопустимые потери на частотах переключения в несколько килогерц. Кроме того, больше энергии теряется во время переходов переключающего полупроводника на более высокие частоты. Кроме того, требуется больше внимания к физической компоновке печатной платы, поскольку паразитные факторы становятся более значительными, и количествоэлектромагнитные помехи будут более выраженными.

Потеря меди [ править ]

На низких частотах (например, при линейной частоте 50 или 60 Гц) дизайнеры обычно могут игнорировать скин-эффект . Для этих частот скин-эффект существенен только тогда, когда проводники большие, более 0,3 дюйма (7,6 мм) в диаметре.

Импульсные источники питания должны уделять больше внимания скин-эффекту, поскольку он является источником потери мощности. На частоте 500 кГц глубина скин-слоя в меди составляет около 0,003 дюйма (0,076 мм) - размер меньше, чем у типичных проводов, используемых в источнике питания. Эффективное сопротивление проводников увеличивается, потому что ток концентрируется вблизи поверхности проводника, а внутренняя часть несет меньший ток, чем на низких частотах.

Скин-эффект усугубляется гармониками, присутствующими в формах сигналов переключения с высокоскоростной широтно-импульсной модуляцией (ШИМ). Подходящая глубина скин-слоя - это не только глубина основы, но и глубина скин-слоя на гармониках. [35]

Помимо скин-эффекта, существует еще эффект близости , который является еще одним источником потери мощности.

Коэффициент мощности [ править ]

Простые автономные импульсные источники питания включают простой двухполупериодный выпрямитель, подключенный к конденсатору, аккумулирующему большую энергию. Такие ИИП потребляют ток из линии переменного тока короткими импульсами, когда мгновенное напряжение сети превышает напряжение на этом конденсаторе. В течение оставшейся части цикла переменного тока конденсатор обеспечивает источник питания энергией.

В результате входной ток таких базовых импульсных источников питания имеет высокое содержание гармоник и относительно низкий коэффициент мощности. Это создает дополнительную нагрузку на инженерные сети, увеличивает нагрев электропроводки здания, трансформаторов., и стандартные электродвигатели переменного тока, и могут вызвать проблемы со стабильностью в некоторых приложениях, например, в системах аварийных генераторов или генераторов самолетов. Гармоники можно удалить с помощью фильтрации, но фильтры дороги. В отличие от коэффициента мощности смещения, создаваемого линейными индуктивными или емкостными нагрузками, это искажение не может быть исправлено добавлением единственной линейной составляющей. Требуются дополнительные цепи, чтобы противодействовать эффекту коротких импульсов тока. Установка каскада повышающего прерывателя с регулируемым током после автономного выпрямителя (для зарядки накопительного конденсатора) может скорректировать коэффициент мощности, но увеличивает сложность и стоимость.

В 2001 году Европейский союз ввел в действие стандарт IEC / EN61000-3-2, чтобы установить пределы гармоник входного переменного тока до 40-й гармоники для оборудования мощностью более 75 Вт. Стандарт определяет четыре класса оборудования в зависимости от его тип и форма волны тока. Наиболее строгие ограничения (класс D) установлены для персональных компьютеров, компьютерных мониторов и ТВ-приемников. Чтобы соответствовать этим требованиям, современные импульсные источники питания обычно включают дополнительный каскад коррекции коэффициента мощности (PFC).

Типы [ править ]

Импульсные источники питания можно классифицировать по топологии схемы. Наиболее важное различие между изолированными преобразователями и неизолированными.

Неизолированные топологии [ править ]

Неизолированные преобразователи являются самыми простыми: в трех основных типах используется один индуктор для хранения энергии. В столбце соотношения напряжений D - это рабочий цикл преобразователя, который может варьироваться от 0 до 1. Входное напряжение (V 1 ) предполагается больше нуля; если он отрицательный, для единообразия отмените выходное напряжение (V 2 ).

Когда оборудование доступно для людей, для сертификации безопасности применяются пределы напряжения ≤ 30 В (среднеквадратическое значение) переменного тока или ≤ 42,4 В пикового или ≤ 60 В постоянного тока и пределы мощности 250 ВА ( одобрение UL , CSA , VDE ).

Топологии понижающего, повышающего и понижающего – повышающего уровней тесно связаны. Вход, выход и земля соединяются в одной точке. Один из трех по пути проходит через индуктор, а два других проходят через переключатели. Один из двух переключателей должен быть активным (например, транзистор), а другой может быть диодом. Иногда топологию можно изменить, просто перемаркировав соединения. Понижающий преобразователь на входе 12 В и выходе 5 В может быть преобразован в повышающий-повышающий преобразователь на входе 7 В и –5 В на выходе путем заземления выхода и снятия выходного сигнала с контакта заземления .

Точно так же конвертеры SEPIC и Zeta являются незначительными переделками конвертера Ćuk.

Нейтральная точка зафиксированный (НКП) топология используется в источниках питания и активных фильтров и упоминается здесь для полноты. [37]

Коммутаторы становятся менее эффективными, поскольку рабочие циклы становятся чрезвычайно короткими. Для больших изменений напряжения может быть лучше трансформаторная (изолированная) топология.

Изолированные топологии [ править ]

Все изолированные топологии включают в себя трансформатор и, таким образом, могут выдавать выходное напряжение с более высоким или более низким напряжением, чем входное, за счет регулировки коэффициента передачи. [38] [39] Для некоторых топологий на трансформаторе можно разместить несколько обмоток для получения нескольких выходных напряжений. [40] Некоторые преобразователи используют трансформатор для хранения энергии, в то время как другие используют отдельный индуктор.

Для импульсных источников питания с нулевым напряжением требуются только небольшие радиаторы, так как мало энергии теряется в виде тепла. Это позволяет им быть маленькими. Этот ЗВС может выдавать более 1 киловатта. Трансформатор не показан.
  • ^ 1 Поведение логарифмического контура управления обратным преобразователем может быть труднее контролировать, чем другие типы. [43]
  • ^ 2 Прямой преобразователь имеет несколько вариантов, отличающихся тем, как трансформатор «сбрасывается» на нулевоймагнитный потоккаждый цикл.

Контроллер прерывателя: выходное напряжение связано со входом, поэтому очень жестко контролируется

Квазирезонансный переключатель нулевого тока / нулевого напряжения [ править ]

Квазирезонансное переключение переключается, когда напряжение минимально и обнаруживается впадина.

В квазирезонансном переключателе нулевого тока / нулевого напряжения (ZCS / ZVS) «каждый цикл переключения доставляет квантованный« пакет »энергии на выход преобразователя, а включение и выключение переключения происходит при нулевом токе и напряжении. , что приводит к переключению без потерь ". [44] Квазирезонансное переключение, также известное как переключение впадины , снижает электромагнитные помехи в источнике питания двумя способами:

  1. Путем переключения биполярного переключателя при минимальном напряжении (в нижней части) для минимизации эффекта жесткого переключения, вызывающего электромагнитные помехи.
  2. Путем переключения при обнаружении впадины, а не на фиксированной частоте, вводится дрожание собственной частоты, которое расширяет спектр РЧ-излучения и снижает общие EMI.

Эффективность и EMI [ править ]

Более высокое входное напряжение и режим синхронного выпрямления делают процесс преобразования более эффективным. Также необходимо учитывать энергопотребление контроллера. Более высокая частота переключения позволяет уменьшить размеры компонентов, но может создавать больше радиопомех . Резонансный прямой преобразователь производит самый низкий EMI любого подхода SMPS , поскольку он использует мягкое переключение резонансного сигнала по сравнению с обычным жестким переключением.

Режимы отказа [ править ]

В случае отказа компонентов коммутации, печатной платы и т. Д. Ознакомьтесь со статьей о режимах отказа электроники .

Источники питания, в которых используются конденсаторы, страдающие от конденсаторной чумы, могут преждевременно выйти из строя, когда емкость упадет до 4% от первоначального значения. [ неудавшаяся проверка ] Это обычно приводит к тому, что переключающийся полупроводник выходит из строя в проводящем режиме. Это может подвергнуть подключенные нагрузки полному входному напряжению и току и вызвать дикие колебания на выходе. [45]

Выход из строя переключающего транзистора является обычным явлением. Из-за больших коммутируемых напряжений, с которыми должен работать этот транзистор (около 325 В для сети 230 В переменного тока), эти транзисторы часто закорачивают, что в свою очередь немедленно срабатывает главный внутренний предохранитель питания.

Меры предосторожности [ править ]

В конденсаторе основного фильтра часто сохраняется до 325 вольт после того, как шнур питания был отсоединен от стены. Не все источники питания содержат небольшой «спускной» резистор для медленной разрядки этого конденсатора. Любой контакт с этим конденсатором может привести к серьезному поражению электрическим током.

Первичная и вторичная стороны могут быть соединены с конденсатором для уменьшения электромагнитных помех и компенсации различных емкостных связей в цепи преобразователя, где трансформатор является одним. В некоторых случаях это может привести к поражению электрическим током. В соответствии с IEC 60950 ток, протекающий от линии или нейтрали через резистор 2 кОм к любой доступной части, должен быть менее 250 мкА для ИТ-оборудования. [46]

Приложения [ править ]

Зарядное устройство для мобильного телефона с переключением режимов
ИИП мощностью 450 Вт для использования в персональных компьютерах с видимыми входом питания, вентилятором и выходными шнурами

Импульсные блоки питания (БП) в бытовых изделиях, таких как персональные компьютеры, часто имеют универсальные входы, что означает, что они могут принимать питание от сетевых источников по всему миру, хотя может потребоваться ручной переключатель диапазона напряжения. Импульсные источники питания могут работать в широком диапазоне частот и напряжений питания.

Из-за большого объема зарядные устройства для мобильных телефонов всегда были особенно чувствительны к затратам. Первыми зарядными устройствами были линейные источники питания , но они быстро перешли на экономичную топологию SMPS с преобразователем с кольцевым дросселем (RCC), когда требовались новые уровни эффективности. В последнее время потребность в еще более низких требованиях к мощности без нагрузки в приложении привела к более широкому использованию обратноходовой топологии; Контроллеры обратного хода с датчиком первичной стороны также помогают сократить перечень материалов (BOM), удаляя компоненты датчика вторичной стороны, такие как оптопары . [ необходима цитата ]

Импульсные источники питания также используются для преобразования постоянного тока в постоянный. В автомобилях, где тяжелые автомобили используют номинальный источник питания 24 В постоянного тока, 12 В для аксессуаров может подаваться через импульсный источник постоянного / постоянного тока. Это имеет то преимущество перед подключением батареи к позиции 12 В (с использованием половины ячеек) в том, что вся нагрузка 12 В равномерно распределяется по всем ячейкам батареи 24 В. В промышленных установках, таких как телекоммуникационные стойки, основная мощность может распределяться при низком постоянном напряжении (например, от системы резервного питания от аккумуляторной батареи), а отдельные элементы оборудования будут иметь преобразователи постоянного / постоянного тока для подачи любых необходимых напряжений.

Импульсные источники питания обычно используются в качестве источников сверхнизкого напряжения для освещения, и в этом случае их часто называют «электронными трансформаторами».

Примеры ИИП для систем освещения сверхнизкого напряжения, называемые электронными трансформаторами.

Терминология [ править ]

Термин « режим переключения» широко использовался до тех пор, пока Motorola не заявила о праве собственности на товарный знак SWITCHMODE для продуктов, ориентированных на рынок импульсных источников питания, и не начала применять свой товарный знак. [33] Импульсный источник питания , импульсный источник питания и импульсный стабилизатор относятся к этому типу источника питания. [33]

См. Также [ править ]

  • Автотрансформатор
  • Повышающий преобразователь
  • Бак-конвертер
  • Наведенные электромагнитные помехи
  • Преобразователь постоянного тока в постоянный
  • Пусковой ток
  • Джоуль вор
  • Индуктивность утечки
  • Резонансный преобразователь
  • Коммутационный усилитель
  • Трансформатор
  • Вибратор (электронный)

Примечания [ править ]

  1. ^ США 1037492 , Кеттеринг, Чарльз Ф. , "Система зажигания", опубликованном 2 ноября 1910, опубликованный 3 сентября 1912 
  2. ^ США 1754265 , Coursey, Филип Рэй, "Электрический конденсатор", опубликованном 23 июня 1926, выпущенный 15 апреля 1930 
  3. ^ a b "Когда был изобретен источник питания SMPS?" . electronicspoint.com .
  4. ^ «Электрические конденсаторы (Открытая библиотека)» . openlibrary.org .
  5. ^ "Из первых рук: история автомобильного регулятора напряжения - Wiki истории техники и технологий" . ethw.org . Проверено 21 марта 2018 .
  6. ^ США 2014869 , Тир - младший, Benjamin R. & Max A. Уайтинг, "Electroresponsive Device", опубликованном 15 ноября 1932, выпущенный 17 сентября 1935 
  7. ^ Модель Cadillac 5-X, 5-ламповый супергетеродинный радиоприемник, использовала синхронный вибратор для генерации источника питания B +. RadioMuseum.org, http://www.radiomuseum.org/r/cadillacge_5x.html#a
  8. ^ "1960: Металлооксидный полупроводниковый (МОП) транзистор продемонстрирован" . Кремниевый двигатель . Музей истории компьютеров . Проверено 31 августа 2019 года .
  9. ^ «Применение полевых МОП-транзисторов к современным схемам переключения мощности» . Электронный дизайн . 23 мая 2016 . Проверено 10 августа 2019 .
  10. ^ "google.com/patents - Система питания транзисторного преобразователя" . google.com . Проверено 21 марта 2018 .
  11. ^ Кен Ширрифф (январь 2019). «Внутри основной памяти Навигационного компьютера Apollo» . righto.com . Дата обращения 4 июля 2019 .
  12. ^ µA723 Precision Voltage Regulators, http://www.ti.com/lit/ds/symlink/ua723.pdf, техническоеописание,август 1972 г., исправлено в июле 1999 г.
  13. ^ "slack.com - Информация о тестовом оборудовании и электронике" . slack.com . Архивировано из оригинального 2 -го августа 2002 года . Проверено 21 марта 2018 .
  14. ^ "Список плагинов 7000" . www.kahrs.us . Проверено 21 марта 2018 .
  15. ^ tek.com - Часто задаваемые вопросы об осциллографах серии 7000
  16. ^ docmesure.free.fr - TEKSCOPE March 1971 7704 High-Efficiency Power Supply (Руководство по обслуживанию, март 1971 г.pdf)
  17. ^ a b Ширрифф, Кен (август 2019 г.). «Тихая переделка компьютерных блоков питания: улучшенные за полвека транзисторы и импульсные регуляторы революционизировали дизайн компьютерных блоков питания» . IEEE Spectrum . Проверено 12 сентября 2019 .
  18. ^ Kilbane, Дорис (2009-12-07). "Роберт Бошерт: Человек многих шляп меняет мир источников питания" . Электронный дизайн . Проверено 12 сентября 2019 .
  19. ^ Ассоциация производителей источников питания: генеалогия
  20. ^ Компьютерные продукты получили новое имя: Artesyn
  21. ^ Компьютерные продукты покупает конкурирующего производителя
  22. ^ "jacques-laporte.org - Блок питания HP-35 и другие старинные калькуляторы HP" . citycable.ch . Проверено 21 марта 2018 .
  23. ^ "Xerox Alto Y Combinator: восстановление легендарного компьютера 1970-х годов с графическим интерфейсом пользователя" . arstechnica.com . Проверено 21 марта 2018 .
  24. ^ Смитсоновские чипы: профили североамериканских компаний, стр.1-192
  25. ^ businessinsider.com - ЭКСКЛЮЗИВ: Интервью с первым генеральным директором Apple Майклом Скоттом 24 мая 2011 г.
  26. ^ "HP 3048A" . hpmemoryproject.org .
  27. ^ «Возможность экономии энергии за счет повышения эффективности энергоснабжения» .
  28. ^ https://lygte-info.dk/info/SMPS%20workings%20UK.html
  29. ^ "Информация о легком покалывании - НАС" . pcsupport.lenovo.com .
  30. ^ «Запрет ткацких станков для внешних трансформаторов» . 080224 sound.whsites.net
  31. ^ «Производство, доставка и использование энергии постоянного тока, Белая книга EPRI» (PDF) . Стр. 9 080317 mydocs.epri.com
  32. ^ Примечания по поиску и устранению неисправностей и ремонту малых импульсных источников питания: переключение между входом 115 В переменного тока и 230 В переменного тока. Поищите на странице "удвоитель" для получения дополнительной информации. Проверено в марте 2013 года.
  33. ^ a b c Фаутц, Джерролд. «Введение в руководство по проектированию импульсных источников питания» . Проверено 6 октября 2008 .
  34. ^ «Конструкция LLC-преобразователя мощностью 11 кВт, 70 кГц с КПД 98%» .
  35. Перейти ↑ Pressman 1998 , p. 306
  36. ^ a b ON Semiconductor (11 июля 2002 г.). «Источники питания SWITCHMODE - Справочное руководство и руководство по проектированию» (PDF) . Проверено 17 ноября 2011 .
  37. ^ «Фильтр активной мощности, реализованный с многоуровневыми однофазными преобразователями NPC» . 2011. Архивировано из оригинала на 2014-11-26 . Проверено 15 марта 2013 .
  38. ^ «Основы преобразователя постоянного тока в постоянный» . Архивировано из оригинала на 2005-12-17. 090112 powerdesigners.com
  39. ^ «ПРЕОБРАЗОВАТЕЛИ DC-DC: ПРАЙМЕР» (PDF) . Архивировано из оригинального (PDF) 18 апреля 2009 года. 090112 jaycar.com.au Стр. 4
  40. ^ "Хайнц Шмидт-Вальтер" . h-da.de .
  41. ^ Ирвинг, Брайан Т .; Йованович, Милан М. (март 2002 г.), Анализ и проектирование самоколебательного обратного преобразователя (PDF) , Proc. IEEE Applied Power Electronics Conf. (АТЭС), стр. 897-903, архивируются с оригинала (PDF) на 2011-07-09 , извлекаются 2009-09-30
  42. ^ «Топология RDFC для линейной замены» . Архивировано из оригинала на 2008-09-07. 090725 camsemi.com Дополнительная информация о резонансной прямой топологии для потребительских приложений
  43. ^ «Уравнение усиления улучшает страницу производительности обратного хода» . 100517 powerelectronics.com
  44. ^ «Ошибка - EDN» . EDN . Архивировано из оригинала на 2016-05-23.
  45. ^ «Плохие конденсаторы: информация и симптомы» . 100211 lowyat.net
  46. ^ (PDF) . 15 марта 2012 г. https://web.archive.org/web/20120315203753/http://www.sitmlucknow.com/publication/Jha%5B2%5D.pdf . Архивировано из оригинального (PDF) 15 марта 2012 года. Отсутствует или пусто |title=( справка )

Ссылки [ править ]

  • Прессман, Абрахам И. (1998), Дизайн импульсного источника питания (2-е изд.), McGraw-Hill, ISBN 0-07-052236-7

Дальнейшее чтение [ править ]

  • Бассо, Кристоф (2008), Импульсные источники питания: моделирование и практические разработки SPICE , McGraw-Hill, ISBN 978-0-07-150858-2
  • Бассо, Кристоф (2012), Проектирование контуров управления для линейных и импульсных источников питания: Учебное руководство , Artech House, ISBN 978-1608075577
  • Браун, Марти (2001), Поваренная книга по источникам питания (2-е изд.), Newnes, ISBN 0-7506-7329-X
  • Эриксон, Роберт В .; Максимович, Драган (2001), Основы силовой электроники (второе изд.), ISBN 0-7923-7270-0
  • Лю, Минлян (2006), Демистификация схем переключаемых конденсаторов , Elsevier, ISBN 0-7506-7907-7
  • Ло, Фанг Линь; Йе, Хун (2004), Advanced DC / DC Converter , CRC Press, ISBN 0-8493-1956-0
  • Ло, Фанг Линь; Йе, Хонг; Рашид, Мухаммад Х. (2005), Power Digital Power Electronics and Applications , Elsevier, ISBN 0-12-088757-6
  • Маниктала, Санджая (2004), Проектирование и оптимизация импульсных источников питания , McGraw-Hill, ISBN 0-07-143483-6
  • Maniktala, Sanjaya (2006), Switching Power Supplies A to Z , Newnes / Elsevier, ISBN 0-7506-7970-0
  • Маниктала, Санджая (2007 г.), Устранение неисправностей переключаемых преобразователей мощности: практическое руководство , Newnes / Elsevier, ISBN 978-0-7506-8421-7
  • Мохан, Нед; Undeland, Tore M .; Роббинс, Уильям П. (2002), Силовая электроника: преобразователи, приложения и дизайн , Wiley, ISBN 0-471-22693-9
  • Нельсон, Карл (1986), LT1070 дизайн Руководство , AN19 , Linear TechnologyПримечание по применению, в котором подробно рассказывается о приложениях Buck, Boost, CUK, Inverter. (загрузить в формате PDF с http://www.linear.com/designtools/app_notes.php )
  • Прессман, Авраам I .; Биллингс, Кейт; Мори, Тейлор (2009), Дизайн импульсного источника питания (третье изд.), McGraw-Hill, ISBN 978-0-07-148272-1
  • Рашид, Мухаммад Х. (2003), Силовая электроника: схемы, устройства и приложения , Prentice Hall, ISBN 0-13-122815-3

Внешние ссылки [ править ]

  • СМИ, связанные с импульсными источниками питания на Викискладе?
  • Плакат с топологиями импульсных источников питания - Texas Instruments
  • Источники мощности нагрузки для максимальной эффективности, Джеймс Колотти, опубликовано в EDN, 5 октября 1979 г.