Page semi-protected
Из Википедии, бесплатной энциклопедии
  (Перенаправлено с Valves )
Перейти к навигации Перейти к поиску

Эти водяные клапаны приводятся в действие поворотными ручками .

Клапан представляет собой устройство или природный объект , который регулирует, направляет или контролируют поток текучей среды (газы, жидкости, псевдоожиженные твердые частицы или суспензии ) на открытии, закрытие, или частично препятствовании различные проходы. Клапаны технически являются фитингами , но обычно рассматриваются как отдельная категория. В открытом клапане жидкость течет в направлении от более высокого давления к более низкому давлению. Слово происходит от латинского valva , движущаяся часть двери, в свою очередь от volvere , поворачивать, катиться.

Самый простой и очень древний клапан - это просто свободно откидывающаяся заслонка, которая поворачивается вниз, чтобы препятствовать потоку жидкости (газа или жидкости) в одном направлении, но подталкивается самим потоком, когда поток движется в противоположном направлении. Это называется обратным клапаном , поскольку он предотвращает или « контролирует » поток в одном направлении. Современные регулирующие клапаны могут регулировать давление или расход на выходе и работать в сложных системах автоматизации .

Клапаны имеют множество применений, включая управление водой для орошения , промышленное использование для управления процессами, бытовое использование, такое как включение / выключение и регулирование давления в посудомоечных машинах и стиральных машинах и кранах в доме. Даже аэрозольные баллончики имеют встроенный крошечный клапан. Клапаны также используются в военной и транспортной сферах. В воздуховодах HVAC и других воздушных потоках, близких к атмосферному, клапаны называются заслонками . Однако в системах сжатого воздуха используются клапаны, наиболее распространенным типом которых являются шаровые краны.

Приложения

Клапаны используются практически во всех промышленных процессах, включая переработку воды и сточных вод, горнодобывающую промышленность, производство электроэнергии, переработку нефти, газа и нефти, производство продуктов питания, химическое производство и производство пластмасс и многие другие области.

Люди в развитых странах используют клапаны в своей повседневной жизни, включая водопроводные клапаны, такие как краны для водопроводной воды , газовые регулирующие клапаны на плитах, небольшие клапаны, установленные на стиральных и посудомоечных машинах , устройства безопасности, установленные на системах горячего водоснабжения , и тарельчатые клапаны в автомобиле. двигатели.

В природе существуют клапаны, например односторонние клапаны в венах, контролирующие кровообращение , и сердечные клапаны, контролирующие поток крови в камерах сердца и поддерживающие правильное насосное действие.

Клапаны могут управляться вручную с помощью ручки , рычага , педали или колеса. Клапаны также могут быть автоматическими, приводимыми в действие изменениями давления , температуры или расхода. Эти изменения могут воздействовать на диафрагму или поршень, который, в свою очередь, приводит в действие клапан. Примерами клапана этого типа обычно являются предохранительные клапаны, установленные в системах горячего водоснабжения или бойлерах .

Более сложные системы управления, использующие клапаны, требующие автоматического управления на основе внешнего входа (т. Е. Регулирования потока через трубу до изменяющейся уставки), требуют привода . Привод будет перемещать клапан в зависимости от его входа и настройки, позволяя точно позиционировать клапан и позволяя контролировать множество требований.

Вариация

Клапаны широко различаются по форме и применению. Размеры [ неоднозначные ] обычно составляют от 0,1 мм до 60 см. Специальные клапаны могут иметь диаметр более 5 метров. [ какой? ]

Затраты на клапаны варьируются от простых недорогих одноразовых клапанов до специализированных клапанов, стоимость которых составляет тысячи долларов США за дюйм диаметра клапана.

Одноразовые клапаны можно найти в обычных предметах домашнего обихода, включая дозаторы для мини-насосов и аэрозольные баллончики .

Термин « клапан» обычно используется для обозначения тарельчатых клапанов, которые встречаются в подавляющем большинстве современных двигателей внутреннего сгорания, например, в большинстве транспортных средств, работающих на ископаемом топливе, которые используются для управления впуском топливно-воздушной смеси и обеспечения вентиляции выхлопных газов.

Типы

Valves are quite diverse and may be classified into a number of basic types. Valves may also be classified by how they are actuated:

  • Hydraulic
  • Pneumatic
  • Manual
  • Solenoid valve
  • Motor

Components

Cross-sectional diagram of an open globe valve.
1. body
2. ports
3. seat
4. stem
5. disc when valve is open
6. handle or handwheel when valve is open
7. bonnet
8. packing
9. gland nut
10. fluid flow when valve is open
11. position of disc if valve were shut
12. position of handle or handwheel if valve were shut

The main parts of the most usual type of valve are the body and the bonnet. These two parts form the casing that holds the fluid going through the valve.

Body

The valve's body is the outer casing of most or all of the valve that contains the internal parts or trim. The bonnet is the part of the encasing through which the stem (see below) passes and that forms a guide and seal for the stem. The bonnet typically screws into or is bolted to the valve body.

Valve bodies are usually metallic or plastic. Brass, bronze, gunmetal, cast iron, steel, alloy steels and stainless steels are very common.[1] Seawater applications, like desalination plants, often use duplex valves, as well as super duplex valves, due to their corrosion resistant properties, particularly against warm seawater. Alloy 20 valves are typically used in sulphuric acid plants, whilst monel valves are used in hydrofluoric acid (HF Acid) plants. Hastelloy valves are often used in high temperature applications, such as nuclear plants, whilst inconel valves are often used in hydrogen applications. Plastic bodies are used for relatively low pressures and temperatures. PVC, PP, PVDF and glass-reinforced nylon are common plastics used for valve bodies.[citation needed]

Bonnet

A bonnet acts as a cover on the valve body. It is commonly semi-permanently screwed into the valve body or bolted onto it. During manufacture of the valve, the internal parts are put into the body and then the bonnet is attached to hold everything together inside. To access internal parts of a valve, a user would take off the bonnet, usually for maintenance. Many valves do not have bonnets; for example, plug valves usually do not have bonnets. Many ball valves do not have bonnets since the valve body is put together in a different style, such as being screwed together at the middle of the valve body.

Ports

Ports are passages that allow fluid to pass through the valve. Ports are obstructed by the valve member or disc to control flow. Valves most commonly have 2 ports, but may have as many as 20. The valve is almost always connected at its ports to pipes or other components. Connection methods include threadings, compression fittings, glue, cement, flanges, or welding.

Handle or actuator

A handle is used to manually control a valve from outside the valve body. Automatically controlled valves often do not have handles, but some may have a handle (or something similar) anyway to manually override automatic control, such as a stop-check valve. An actuator is a mechanism or device to automatically or remotely control a valve from outside the body. Some valves have neither handle nor actuator because they automatically control themselves from inside; for example, check valves and relief valves may have neither.

Disc

Valve disc

A disc or valve member is a movable obstruction inside the stationary body that adjustably restricts flow through the valve. Although traditionally disc-shaped, discs come in various shapes. Depending on the type of valve, a disc can move linearly inside a valve, or rotate on the stem (as in a butterfly valve), or rotate on a hinge or trunnion (as in a check valve). A ball is a round valve member with one or more paths between ports passing through it. By rotating the ball, flow can be directed between different ports. Ball valves use spherical rotors with a cylindrical hole drilled as a fluid passage. Plug valves use cylindrical or conically tapered rotors called plugs.[ambiguous] Other round shapes for rotors are possible as well in rotor valves, as long as the rotor can be turned inside the valve body. However, not all round or spherical discs are rotors; for example, a ball check valve uses the ball to block reverse flow, but is not a rotor because operating the valve does not involve rotation of the ball.

Seat

The shut off butterfly valve for a Francis turbine at Gordon Power Station, Tasmania
Ball valve

The seat is the interior surface of the body which contacts the disc to form a leak-tight seal. In discs that move linearly or swing on a hinge or trunnion, the disc comes into contact with the seat only when the valve is shut. In disks that rotate, the seat is always in contact with the disk, but the area of contact changes as the disc is turned. The seat always remains stationary relative to the body.

Seats are classified by whether they are cut directly into the body, or if they are made of a different material:

  • Hard seats are integral to the valve body. Nearly all hard seated metal valves have a small amount of leakage.
  • Soft seats are fitted to the valve body and made of softer materials such as PTFE or various elastomers such as NBR, EPDM, or FKM depending on the maximum operating temperature.

A closed soft seated valve is much less liable to leak when shut while hard seated valves are more durable. Gate, globe, and check valves are usually hard seated while butterfly, ball, plug, and diaphragm valves are usually soft seated.

Stem

Inconel X750 spring

The stem transmits motion from the handle or controlling device to the disc. The stem typically passes through the bonnet when present. In some cases, the stem and the disc can be combined in one piece, or the stem and the handle are combined in one piece.

The motion transmitted by the stem may be a linear force, a rotational torque, or some combination of these (Angle valve using torque reactor pin and Hub Assembly). The valve and stem can be threaded such that the stem can be screwed into or out of the valve by turning it in one direction or the other, thus moving the disc back or forth inside the body.[ambiguous] Packing is often used between the stem and the bonnet to maintain a seal. Some valves have no external control and do not need a stem as in most check valves.

Valves whose disc is between the seat and the stem and where the stem moves in a direction into the valve to shut it are normally-seated or front seated. Valves whose seat is between the disc and the stem and where the stem moves in a direction out of the valve to shut it are reverse-seated or back seated. These terms don't apply to valves with no stem or valves using rotors.

Gaskets

Gaskets are the mechanical seals, or packings, used to prevent the leakage of a gas or fluids from valves.

Valve balls

A valve ball is also used for severe duty, high-pressure, high-tolerance applications. They are typically made of stainless steel, titanium, Stellite, Hastelloy, brass, or nickel. They can also be made of different types of plastic, such as ABS, PVC, PP or PVDF.

Spring

Many valves have a spring for spring-loading, to normally shift the disc into some position by default but allow control to reposition the disc. Relief valves commonly use a spring to keep the valve shut, but allow excessive pressure to force the valve open against the spring-loading. Coil springs are normally used. Typical spring materials include zinc plated steel, stainless steel, and for high temperature applications Inconel X750.

Trim

The internal elements of a valve are collectively referred to as a valve's trim. According to API Standards 600, "Steel Gate Valve-Flanged and Butt-welding Ends, Bolted Bonnets", the trim consists of stem, seating surface in the body, gate seating surface, bushing or a deposited weld for the backseat and stem hole guide, and small internal parts that normally contact the service fluid, excluding the pin that is used to make a stem-to-gate connection (this pin shall be made of an austenitic stainless steel material).

Valve operating positions

A seacock for cooling seawater, on a marine diesel engine. Seacocks are usually ball valves, but may be other types as well.

Valve positions are operating conditions determined by the position of the disc or rotor in the valve. Some valves are made to be operated in a gradual change between two or more positions. Return valves and non-return valves allow fluid to move in 2 or 1 directions respectively.

Two-port valves

Operating positions for 2-port valves can be either shut (closed) so that no flow at all goes through, fully open for maximum flow, or sometimes partially open to any degree in between. Many valves are not designed to precisely control intermediate degree of flow; such valves are considered to be either open or shut. Some valves are specially designed to regulate varying amounts of flow. Such valves have been called by various names such as regulating, throttling, metering, or needle valves. For example, needle valves have elongated conically-tapered discs and matching seats for fine flow control. For some valves, there may be a mechanism to indicate by how much the valve is open, but in many cases other indications of flow rate are used, such as separate flow meters.

In plants with remote-controlled process operation, such as oil refineries and petrochemical plants, some 2-way valves can be designated as normally closed (NC) or normally open (NO) during regular operation. Examples of normally-closed valves are sampling valves, which are only opened while a sample is taken. Other examples of normally-closed valves are emergency shut-down valves, which are kept open when the system is in operation and will automatically shut by taking away the power supply. This happens when there is a problem with a unit or a section of a fluid system such as a leak in order to isolate the problem from the rest of the system. Examples of normally-open valves are purge-gas supply valves or emergency-relief valves. When there is a problem these valves open (by switching them 'off') causing the unit to be flushed and emptied.

Although many 2-way valves are made in which the flow can go in either direction between the two ports, when a valve is placed into a certain application, flow is often expected to go from one certain port on the upstream side of the valve, to the other port on the downstream side. Pressure regulators are variations of valves in which flow is controlled to produce a certain downstream pressure, if possible. They are often used to control flow of gas from a gas cylinder. A back-pressure regulator is a variation of a valve in which flow is controlled to maintain a certain upstream pressure, if possible.

Three-port valves

Schematic 3 way ball valve: L-shaped ball right, T-shaped left

Valves with three ports serve many different functions. A few of the possibilities are listed here.

Three-way ball valves come with a T- or L- shaped fluid passageways inside the rotor. The T valve might be used to permit connection of one inlet to either or both outlets or connection of the two outlets. The L valve could be used to permit disconnection of both or connection of either but not both of two inlets to one outlet.

Shuttle valves automatically connect the higher pressure inlet to the outlet while (in some configurations) preventing flow from one inlet to the other.

Single handle mixer valves produce a variable mixture of hot and cold water at a variable flow rate under control of a single handle.

Thermostatic mixing valves mix hot and cold water to produce a constant temperature in the presence of variable pressures and temperatures on the two input ports.

Four-port valves

A 4-port valve is a valve whose body has four ports equally spaced round the body and the disc has two passages to connect adjacent ports. It is operated with two positions.

It can be used to isolate and to simultaneously bypass a sampling cylinder installed on a pressurized water line. It is useful to take a fluid sample without affecting the pressure of a hydraulic system and to avoid degassing (no leak, no gas loss or air entry, no external contamination)....

Control

A sailor aboard a ship operates the wheel controlling a fuel valve.

Many valves are controlled manually with a handle attached to the stem. If the handle is turned ninety degrees between operating positions, the valve is called a quarter-turn valve. Butterfly, ball valves, and plug valves are often quarter-turn valves. If the handle is circular with the stem as the axis of rotation in the center of the circle, then the handle is called a handwheel. Valves can also be controlled by actuators attached to the stem. They can be electromechanical actuators such as an electric motor or solenoid, pneumatic actuators which are controlled by air pressure, or hydraulic actuators which are controlled by the pressure of a liquid such as oil or water. Actuators can be used for the purposes of automatic control such as in washing machine cycles, remote control such as the use of a centralised control room, or because manual control is too difficult such as when the valve is very large. Pneumatic actuators and hydraulic actuators need pressurised air or liquid lines to supply the actuator: an inlet line and an outlet line. Pilot valves are valves which are used to control other valves. Pilot valves in the actuator lines control the supply of air or liquid going to the actuators.

The fill valve in a toilet water tank is a liquid level-actuated valve. When a high water level is reached, a mechanism shuts the valve which fills the tank.

In some valve designs, the pressure of the flow fluid itself or pressure difference of the flow fluid between the ports automatically controls flow through the valve.

Other considerations

Valves are typically rated for maximum temperature and pressure by the manufacturer. The wetted materials in a valve are usually identified also. Some valves rated at very high pressures are available. When a designer, engineer, or user decides to use a valve for an application, he/she should ensure the rated maximum temperature and pressure are never exceeded and that the wetted materials are compatible with the fluid the valve interior is exposed to. In Europe, valve design and pressure ratings are subject to statutory regulation under the Pressure Equipment Directive 97/23/EC (PED).[2]

Some fluid system designs, especially in chemical or power plants, are schematically represented in piping and instrumentation diagrams. In such diagrams, different types of valves are represented by certain symbols.

Valves in good condition should be leak-free. However, valves may eventually wear out from use and develop a leak, either between the inside and outside of the valve or, when the valve is shut to stop flow, between the disc and the seat. A particle trapped between the seat and disc could also cause such leakage.

Images

  • Globe valve

  • A valve controlled by a wheel (on vertical line)

  • Large butterfly valve

  • Cast iron butterfly valve

  • Cast iron butterfly valve

  • Hastelloy ball valve

  • Stainless steel gate valve

  • Stainless steel gate valve

  • Hastelloy check valves

  • Duplex ball valve

  • Inconel gate valve

  • Stainless steel wafer check valve

  • Inconel check valve

  • Stainless steel ball valve

  • Cryogenic 254 SMO gate valve

  • Inside view of a tilting disc inconel check valve

  • Duplex ball valves

  • Cryogenic super duplex gate valve frozen up during operation

  • Super duplex ball valves

  • Flanged nozzle inconel check valve or axial check valve

  • Inside hastelloy check valve, wafer configuration

  • Large carbon steel swing check valve

  • Disc for an alloy check valve also known as axial check valve

  • Balls for alloy ball valves

  • Wafer check valve

  • Nuts and bolts for incoloy valves

  • Inconel check valve springs

  • Ball for a titanium ball valve

See also

  • Ball valve
  • Control valve – Device used to regulate fluid flow
  • Directional control valve
  • Endobronchial valve, medical
  • Four-way valve
  • Hydrostatic test – Non-destructive test of pressure vessels
  • Pipe – Tubular section or hollow cylinder
  • Piping
  • Plastic pipework
  • Tap (valve) – Valve controlling the release of a liquid or gas
  • Tubing
  • Scuba cylinder valve – Valve controlling flow of breathing gas into and out of a scuba cylinder
  • Valve stem – Type of valve
  • Variable valve timing
  • Zone valve

References

  1. ^ "Types of valve bodies and their specifications - Actuation Valves". www.actuation.co.uk.
  2. ^ "European Commission Pressure Equipment Directive (PED)". Archived from the original on 2010-08-15. Retrieved 2010-09-13.

External links

  • ISO-15926-4 - Nearly 500 valve base classifications and definitions from the ISO 15926 standard.
  • Animations showing Internal Function of Various Types of Valve, tlv.com
  • Flow in known Design Types of Shut-off Valves, home.arcor.de
  • Valves: Piping and Instrumentation Diagram Standard Notation, controls.engin.umich.edu
  • Department of Energy Fundamentals Handbook, Mechanical Science, Module 4 Valves