Диагонализируемая матрица


В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : VV называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения.[1] Квадратная матрица, которую нельзя диагонализировать, называется дефектной.

Диагонализируемые матрицы и отображения интересны, поскольку с диагональными матрицами просто работать: собственные значения и векторы известны, возведение в степень осуществляется возведением в степень диагональных элементов, определитель равен произведению диагональных элементов. С геометрической точки зрения диагонализируемая матрица представляет собой неоднородное масштабирование: в каждом направлении растяжение происходит в общем случае с разным коэффициентом в зависимости от числа на диагонали.

Матрица или линейное отображение диагонализируемо над полем F тогда и только тогда, когда минимальный многочлен является произведением линейных множителей над полем F. Иными словами, матрица диагонализируема тогда и только тогда, когда все делители минимального многочлена являются линейными.

Пусть A матрица над F. Если A диагонализируема, то любая её степень будет диагонализируемой. Если A обратима, F алгебраически замкнуто, An диагонализируемо для некоторого n, не являющегося кратным характеристике F, то A диагонализируема.

Над C почти любая матрица является диагонализируемой. Более точно: множество комплексных матриц размера n×n, не являющихся диагонализируемыми над C, при рассмотрении в виде подмножества Cn×n имеет нулевую меру Лебега. Можно также сказать, что диагонализируемые матрицы образуют плотное подмножество в рамках топологии Зарисского: дополнение к этому подмножеству лежит в множестве, в котором дискриминант характеристического многочлена обнуляется, то есть на гиперповерхности. Над R это не выполняется.

Декомпозиция Жордана-Шевалле представляет оператор в виде суммы диагонализируемой и нильпотентной части. Следовательно, матрица является диагонализируемой тогда и только тогда, когда нильпотентная часть нулевая. Иными словами, матрица диагонализируема, если каждый блок жордановой формы не имеет нильпотентной части.