Свободная группа


Свобо́дная гру́ппа в теории групп — группа, для которой существует такое её подмножество, называемое базисом, что каждый элемент группы может быть единственным образом записан в виде несократимого слова в элементах базиса и их обратных. Является центральным понятием комбинаторной теории групп.

Любые две группы, обладающие равномощными базисами, изоморфны. Мощность базиса свободной группы называется её рангом. В частности, для каждого определена свободная группа ранга , которая обозначается . Например, группа изоморфна бесконечной циклической группе.

Возможно предъявить явную конструкцию свободных групп, доказав тем самым их существование[1][2]. Будем считать элементы множества «символами» и для каждого символа из введём символ ; множество последних обозначим . Пусть

Определим слово над как конечную цепочку (возможно, повторяющихся) символов из , записанных друг за другом. Вместе с операцией конкатенации (склейки, приписывания) множество слов над становится полугруппой. Будем считать, что во множестве слов имеется пустое слово , которое не содержит символов. Таким образом получается моноид слов над