Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
US NRC изображение современного паротурбинного генератора (ПТГ).

В производстве электроэнергии , A генератор [1] представляет собой устройство , которое преобразует движущую силу ( механическая энергия ) в электрическую энергию для использования во внешнем контуре . Источники механической энергии включают паровые турбины , газовые турбины , водяные турбины , двигатели внутреннего сгорания , ветряные турбины и даже ручные кривошипы . Первый электромагнитный генератор, диск Фарадея , был изобретен в 1831 году британским ученым Майклом Фарадеем . Генераторы обеспечивают почти всю мощность дляэлектрические сети .

Обратное преобразование электрической энергии в механическую осуществляется электродвигателем , а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы.

Терминология [ править ]

Ранний генератор Ганца в Звевегеме , Западная Фландрия , Бельгия

Электромагнитные генераторы делятся на две большие категории: динамо-машины и генераторы переменного тока.

  • Динамо генерирует пульсирующий постоянный ток за счет использования коммутатора.
  • Генераторы вырабатывают переменный ток.

Механически генератор состоит из вращающейся части и неподвижной части:

  • Ротор : вращающаяся часть электрической машины .
  • Статор : неподвижная часть электрической машины, которая окружает ротор.

Одна из этих частей генерирует магнитное поле, другая имеет проволочную обмотку, в которой изменяющееся поле индуцирует электрический ток:

  • Обмотка возбуждения или полевые (постоянные) магниты: компонент электрической машины, создающий магнитное поле . Магнитное поле динамо-машины или генератора переменного тока может создаваться либо проволочными обмотками, называемыми катушками возбуждения, либо постоянными магнитами . Генераторы с электрическим возбуждением включают систему возбуждения для создания потока поля. Генератор, использующий постоянные магниты (PM), иногда называют магнето или синхронным генератором с постоянными магнитами (PMSM).
  • Якорь : компонент электрической машины, производящий энергию. В генераторе, генераторе переменного тока или динамо-машине обмотки якоря генерируют электрический ток, который обеспечивает питание внешней цепи.

Якорь может находиться либо на роторе, либо на статоре, в зависимости от конструкции, с катушкой возбуждения или магнитом на другой части.

История [ править ]

До открытия связи между магнетизмом и электричеством были изобретены электростатические генераторы . Они работали на принципах электростатики , используя движущиеся электрически заряженные ленты, пластины и диски, которые переносили заряд на электрод с высоким потенциалом. Заряд генерировался одним из двух механизмов: электростатической индукцией или трибоэлектрическим эффектом . Такие генераторы генерировали очень высокое напряжение и низкий ток . Из-за их неэффективности и сложности изоляциимашины, которые производили очень высокое напряжение, электростатические генераторы имели низкую номинальную мощность и никогда не использовались для выработки коммерчески значимых объемов электроэнергии. Их единственное практическое применение заключалось в питании первых рентгеновских трубок , а затем и некоторых ускорителей атомных частиц .

Генератор диска Фарадея [ править ]

Диск Фарадея был первым электрическим генератором. Магнит в форме подковы (A) создавал магнитное поле через диск (D) . Когда диск поворачивался, это индуцировало электрический ток радиально наружу от центра к ободу. Ток выходил через скользящий пружинный контакт m , через внешнюю цепь и обратно в центр диска через ось.

Принцип действия электромагнитных генераторов был открыт в 1831–1832 годах Майклом Фарадеем . Принцип, позже названный законом Фарадея , заключается в том, что электродвижущая сила создается в электрическом проводнике, который окружает переменный магнитный поток .

Он также построил первый электромагнитный генератор, названный диском Фарадея ; тип униполярного генератора , использующий медный диск, вращающийся между полюсами подковообразного магнита . Он производил небольшое постоянное напряжение .

Эта конструкция была неэффективной из - за отмены самостоятельно противотоков тока в областях диска , которые не находились под воздействием магнитного поля. В то время как ток индуцировался непосредственно под магнитом, он циркулировал в обратном направлении в областях, которые были вне влияния магнитного поля. Этот противоток ограничивал мощность, подаваемую на провода датчика, и вызывал избыточный нагрев медного диска. Более поздние униполярные генераторы решат эту проблему, используя массив магнитов, расположенных по периметру диска, чтобы поддерживать эффект постоянного поля в одном направлении тока.

Другим недостатком было то, что выходное напряжение было очень низким из-за единственного пути тока через магнитный поток. Экспериментаторы обнаружили, что использование нескольких витков провода в катушке может производить более высокие и полезные напряжения. Поскольку выходное напряжение пропорционально количеству витков, генераторы можно легко спроектировать для получения любого желаемого напряжения путем изменения числа витков. Проволочные обмотки стали основой всех последующих конструкций генераторов.

Джедлик и явление самовозбуждения [ править ]

Независимо от Фарадея, Аньос Едлик начал экспериментировать в 1827 году с электромагнитными вращающимися устройствами, которые он назвал электромагнитными самовращающимися роторами . В прототипе однополюсного электростартера (законченного между 1852 и 1854 годами) как неподвижная, так и вращающаяся части были электромагнитными. Это было также открытие принципа динамо самовозбуждения , [2] , который заменил постоянные конструкции магнита. Он также, возможно, сформулировал концепцию динамо-машины в 1861 году (до Сименса и Уитстона ), но не запатентовал ее, так как думал, что не был первым, кто это понял. [3]

Генераторы постоянного тока [ править ]

Динамо Ипполита Пиксии . Коммутатор расположен на валу под вращающимся магнитом.
Эта большая сильноточная динамо - машина с ременным приводом вырабатывала 310 ампер при 7 вольт. Динамо-машины больше не используются из-за размера и сложности коммутатора, необходимого для приложений большой мощности.

Катушка из проволоки , вращающейся в магнитном поле создает ток , который изменяет направление с каждым разворотом на 180 °, переменный ток (АС). Однако для многих ранних применений электричества требовался постоянный ток . В первых практических электрических генераторах, называемых динамо , переменный ток преобразовывался в постоянный ток с помощью коммутатора , набора вращающихся переключающих контактов на валу якоря. Коммутатор менял местами подключение обмотки якоря к цепи каждые 180 ° поворота вала, создавая пульсирующий постоянный ток. Одна из первых динамо-машин была построена Ипполитом Пикси в 1832 году.

Динамо был первым электрическим генератором , способным выдавать мощность для промышленности. Вулрич Электрический генератор 1844, в настоящее время в Thinktank, Бирмингем Музей науки , является самым ранним электрический генератор используется в промышленном процессе. [4] Он использовался фирмой Elkingtons для промышленного гальванического покрытия . [5] [6] [7]

Современная динамо-машина, пригодная для использования в промышленности, была независимо изобретена сэром Чарльзом Уитстоном , Вернером фон Сименсом и Самуэлем Альфредом Варли . Варлей получил патент 24 декабря 1866 года, в то время как Сименс и Уитстон объявили о своих открытиях 17 января 1867 года, последний представил доклад о своем открытии Королевскому обществу .

«Динамо-электрическая машина» использовала автономные катушки электромагнитного поля, а не постоянные магниты для создания поля статора. [8] Конструкция Уитстона была похожа на конструкцию Сименса, с той разницей, что в конструкции Сименса электромагниты статора были включены последовательно с ротором, но в конструкции Уитстона они были параллельны. [9] Использование электромагнитов вместо постоянных магнитов значительно увеличило выходную мощность динамо-машины и впервые позволило произвести высокую мощность. Это изобретение привело к первому значительному промышленному использованию электроэнергии. Например, в 1870-х годах Сименс использовал электромагнитные динамо-машины для питания электродуговых печей для производства металлов и других материалов.

Разработанная динамо-машина состояла из стационарной конструкции, обеспечивающей магнитное поле, и набора вращающихся обмоток, которые вращаются в этом поле. На более крупных машинах постоянное магнитное поле создается одним или несколькими электромагнитами, которые обычно называют катушками возбуждения.

Динамо-машины для генерации большой энергии сейчас редко можно увидеть из-за почти повсеместного использования переменного тока для распределения энергии. До внедрения переменного тока единственными средствами производства и распределения электроэнергии были очень большие динамо-машины постоянного тока. Переменный ток стал доминирующим из-за способности переменного тока легко преобразовываться в и из очень высоких напряжений, чтобы обеспечить низкие потери на больших расстояниях.

Синхронные генераторы (генераторы переменного тока) [ править ]

Генератор переменного тока Ферранти , c. 1900 г.

Благодаря ряду открытий динамо-машина была заменена многими более поздними изобретениями, особенно генератором переменного тока , который был способен генерировать переменный ток . Обычно это синхронные генераторы (SG). Синхронные машины напрямую подключены к сети и должны быть правильно синхронизированы во время запуска. [10] Более того, они возбуждаются специальным управлением для повышения стабильности энергосистемы. [11]

Системы генерации переменного тока были известны в простых формах из первоначального открытия Майклом Фарадеем магнитной индукции электрического тока . Сам Фарадей построил первый генератор переменного тока. Его машина представляла собой «вращающийся прямоугольник», работа которого была гетерополярной - каждый активный проводник последовательно проходил через области, где магнитное поле было в противоположных направлениях. [12]

Большие двухфазные генераторы переменного тока были построены британским электриком Дж. Э. Гордоном в 1882 году. Первая публичная демонстрация «системы генератора переменного тока» была проведена Уильямом Стэнли-младшим , сотрудником Westinghouse Electric в 1886 году [13].

Себастьян Зиани де Ферранти основал Ферранти, Томпсон и Инс в 1882 году для продажи своего генератора переменного тока Ферранти-Томпсона , изобретенного с помощью известного физика лорда Кельвина . [14] Его ранние генераторы переменного тока производили частоты от 100 до 300 Гц . В 1887 году Ферранти спроектировал Дептфордскую электростанцию для Лондонской корпорации электроснабжения с использованием системы переменного тока. После завершения строительства в 1891 году это была первая по-настоящему современная электростанция, вырабатывающая высоковольтный переменный ток, который затем был «понижен» для использования потребителями на каждой улице. Эта базовая система по-прежнему используется во всем мире.

Небольшой генератор переменного тока для электростанции начала 1900-х годов мощностью 75 кВА с прямым приводом и отдельным генератором возбудителя с ременным приводом.

После 1891 года были введены многофазные генераторы переменного тока для питания токов нескольких различных фаз. [15] Более поздние генераторы переменного тока были разработаны для изменения частот переменного тока от шестнадцати до примерно ста герц, для использования с дугой, лампами накаливания и электродвигателями. [16]

Самовозбуждение [ править ]

По мере роста требований к более крупномасштабной выработке электроэнергии возникло новое ограничение: магнитные поля, создаваемые постоянными магнитами. Отвод небольшого количества энергии, вырабатываемой генератором, на катушку электромагнитного поля, позволял генератору производить значительно большую мощность. Эта концепция получила название самовозбуждения .

Катушки возбуждения включены последовательно или параллельно обмотке якоря. Когда генератор впервые начинает вращаться, небольшое количество остаточного магнетизма, присутствующее в железном сердечнике, создает магнитное поле для его запуска, генерируя небольшой ток в якоре. Он протекает через катушки возбуждения, создавая большее магнитное поле, которое генерирует больший ток якоря. Этот процесс "начальной загрузки" продолжается до тех пор, пока магнитное поле в сердечнике не выровняется из-за насыщения, и генератор не достигнет установившейся выходной мощности.

В генераторах очень больших электростанций часто используется отдельный генератор меньшего размера для возбуждения катушек возбуждения большей. В случае серьезного повсеместного отключения электроэнергии, когда произошло изолирование электростанций, станциям может потребоваться выполнить черный пуск, чтобы возбудить поля своих крупнейших генераторов, чтобы восстановить энергоснабжение потребителей.

Специализированные типы генераторов [ править ]

Постоянный ток (DC) [ править ]

Динамо использует коммутаторы для получения постоянного тока. Он самовозбуждается , т. Е. Его полевые электромагниты питаются от собственного выхода машины. Другие типы генераторов постоянного тока используют отдельный источник постоянного тока для питания своих полевых магнитов.

Униполярный генератор [ править ]

Униполярный генератор - это электрический генератор постоянного тока, содержащий электропроводящий диск или цилиндр, вращающийся в плоскости, перпендикулярной однородному статическому магнитному полю. Между центром диска и ободом (или концами цилиндра) создается разность потенциалов, электрическая полярность которой зависит от направления вращения и ориентации поля.

Он также известен как униполярный генератор , ациклический генератор , дисковая динамо-машина или диск Фарадея . Напряжение обычно низкое, порядка нескольких вольт в случае небольших демонстрационных моделей, но большие исследовательские генераторы могут вырабатывать сотни вольт, а в некоторых системах есть несколько генераторов, подключенных последовательно, для создания еще большего напряжения. [17] Они необычны тем, что могут производить огромный электрический ток, иногда более миллиона ампер , потому что униполярный генератор может иметь очень низкое внутреннее сопротивление.

Магнитогидродинамический (МГД) генератор [ править ]

Магнитогидродинамический генератор напрямую извлекает электроэнергию из движущихся горячих газов через магнитное поле без использования вращающихся электромагнитных механизмов. Первоначально МГД-генераторы были разработаны, потому что выходной сигнал плазменного МГД-генератора представляет собой пламя, способное нагревать котлы паровой электростанции . Первой практичной конструкцией был AVCO Mk. 25, разработанный в 1965 году. Правительство США профинансировало существенные разработки, кульминацией которых стала демонстрационная установка мощностью 25 МВт в 1987 году. В Советском Союзе с 1972 года до конца 1980-х годов МГД-установка U 25 регулярно эксплуатировалась в энергосистеме Москвы с рейтинг 25 МВт, самый большой рейтинг МГД в мире на то время. [18] МГД-генераторы работали какцикл долива в настоящее время (2007 г.) менее эффективен, чем газовые турбины комбинированного цикла .

Переменный ток (AC) [ править ]

Индукционный генератор [ править ]

Асинхронные двигатели переменного тока могут использоваться как генераторы, преобразующие механическую энергию в электрический ток. Индукционные генераторы работают за счет механического вращения ротора со скоростью, превышающей синхронную, что приводит к отрицательному скольжению. Обычный асинхронный двигатель переменного тока обычно можно использовать в качестве генератора без каких-либо внутренних изменений. Индукционные генераторы полезны в таких приложениях, как мини-гидроэлектростанции, ветряные турбины или для снижения газовых потоков высокого давления до более низкого давления, поскольку они могут восстанавливать энергию с помощью относительно простых средств управления. Для них не требуется цепь возбудителя, поскольку вращающееся магнитное поле создается индукцией от цепи статора. Они также не требуют оборудования для регулятора скорости, поскольку по своей природе работают на частоте подключенной сети.

Для работы индукционный генератор необходимо возбуждать опережающим напряжением; Обычно это делается путем подключения к электрической сети, или иногда они самовозбуждаются с помощью фазокорректирующих конденсаторов.

Линейный электрогенератор [ править ]

В простейшей форме линейного электрического генератора скользящий магнит движется вперед и назад через соленоид - катушку с медной проволокой. Переменный ток индуцируется в петлях проволоки закона индукции Фарадея каждый раз , когда магнит скользит через. Этот тип генератора используется в фонарике Фарадея . В волновых схемах питания используются более крупные линейные генераторы электроэнергии .

Генераторы постоянной частоты с переменной скоростью [ править ]

Многие попытки использования возобновляемых источников энергии пытаются использовать естественные источники механической энергии (ветер, приливы и т. Д.) Для производства электроэнергии. Поскольку мощность этих источников колеблется, стандартные генераторы, использующие постоянные магниты и фиксированные обмотки, будут выдавать нерегулируемые напряжение и частоту. Накладные расходы на регулирование (перед генератором через редуктор или после генерации электрическими средствами) высоки по сравнению с доступной естественной энергией.

Новые конструкции генераторов, такие как асинхронный или индукционный генератор с одинарным питанием, генератор с двойным питанием или генератор с бесщеточным ротором и двойным питанием, находят успех в применениях с регулируемой скоростью и постоянной частотой, таких как ветряные турбины или другие технологии возобновляемой энергии . Таким образом, в определенных случаях использования эти системы предлагают преимущества по стоимости, надежности и эффективности.

Общие варианты использования [ править ]

Электростанция [ править ]

Электростанция Атлон в Кейптауне , Южная Африка
Гидроэлектростанция на плотине Габчиково , Словакия
Гидроэлектростанция на плотине Глен-Каньон , Пейдж, Аризона

Электростанция , также упоминается как электростанция или электростанция , а иногда генерирующей станция или станция , генерирующей , является промышленным объектом для генерации в электроэнергии . Большинство электростанций содержат один или несколько генераторов - вращающуюся машину, которая преобразует механическую энергию в трехфазную электрическую энергию . Относительное движение между магнитным полем и проводником создает электрический ток. Источник энергии, используемый для поворота генератора, сильно различается. Большинство электростанций в мире используют ископаемое топливо, такое как уголь , нефть и природный газ, для выработки электроэнергии. Более чистые источники включают ядерную энергию и растущее использование возобновляемых источников энергии, таких как солнечная , ветровая , волновая и гидроэлектроэнергия .

Автомобильные генераторы [ править ]

Дорожная техника [ править ]

Автотранспортным средствам требуется электрическая энергия для питания своих приборов, поддержания работы двигателя и подзарядки батарей. Примерно до 1960-х годов в автомобилях, как правило, использовались генераторы постоянного тока (динамо- машины ) с электромеханическими регуляторами. Следуя описанной выше исторической тенденции и по многим из тех же причин, они были заменены генераторами переменного тока со встроенными выпрямительными цепями.

Велосипеды [ править ]

Велосипедам требуется энергия для питания ходовых огней и другого оборудования. На велосипедах используются два распространенных типа генераторов: бутылочные динамо-машины, которые задействуют шину велосипеда по мере необходимости, и динамо-втулки, которые прикрепляются непосредственно к трансмиссии велосипеда. Название условно, поскольку это небольшие генераторы с постоянными магнитами, а не машины постоянного тока с самовозбуждением, как динамо . Некоторые электрические велосипеды способны к рекуперативному торможению , когда приводной двигатель используется в качестве генератора для рекуперации некоторой энергии во время торможения.

Парусники [ править ]

Парусные лодки могут использовать водяной или ветровой генератор для подзарядки аккумуляторов. Небольшой пропеллер , ветряная турбина или крыльчатка подключены к маломощному генератору для подачи токов с типичной скоростью ветра или крейсерской скоростью.

Электросамокаты [ править ]

Электросамокаты с рекуперативным торможением стали популярными во всем мире. Инженеры используют системы рекуперации кинетической энергии на скутере, чтобы снизить потребление энергии и увеличить его диапазон до 40-60% за счет простой рекуперации энергии с помощью магнитного тормоза, который генерирует электрическую энергию для дальнейшего использования. Современные автомобили развивают скорость до 25–30 км / ч и могут разгоняться до 35–40 км.

Генератор [ править ]

Двигатель-генератор представляет собой сочетание электрического генератора и двигателя ( тягача ) смонтированы вместе , чтобы сформировать одну часть автономного оборудования. Обычно используются поршневые двигатели, но также можно использовать газовые турбины. И есть даже гибридные дизель-газовые агрегаты, называемые двухтопливными. Доступно множество различных версий двигателей-генераторов - от очень маленьких переносных бензиновых агрегатов до больших турбинных установок. Основным преимуществом двигателей-генераторов является возможность независимого электроснабжения, что позволяет использовать их в качестве резервного источника питания. [19]

Электрические генераторы с приводом от человека [ править ]

Генератор также может приводиться в движение силой мускулов человека (например, в оборудовании полевых радиостанций).

Протестующие на « Захвати Уолл-стрит» используют велосипеды, подключенные к двигателю и одностороннему диоду для зарядки батарей для своей электроники [20]

Электрогенераторы, приводимые в действие человеком, коммерчески доступны и были проектом некоторых энтузиастов DIY . Обычно такие генераторы работают от педали, переделанного велосипедного тренажера или ножного насоса, они могут практически использоваться для зарядки аккумуляторов, а в некоторых случаях они разработаны со встроенным инвертором. В среднем «здоровый человек» может стабильно производить 75 Вт (0,1 лошадиных сил) в течение полных восьми часов, в то время как «спортсмен первого класса» может производить примерно 298 Вт (0,4 лошадиных силы) за аналогичный период. По окончании которого потребуется неопределенный период отдыха и восстановления. При мощности 298 Вт средний «здоровый человек» истощается в течение 10 минут. [21]Полезная электрическая мощность, которая может быть произведена, будет меньше из-за эффективности генератора. Переносные радиоприемники с рукояткой сделаны, чтобы снизить потребность в приобретении батарей, см. Заводное радио . В середине 20-го века радиоприемники с педальным приводом использовались повсюду в австралийской глубинке для обеспечения школьного образования ( Воздушная школа ), медицинских и других нужд на удаленных станциях и в городах.

Механическое измерение [ править ]

Тахогенератор - это электромеханическое устройство, вырабатывающее выходное напряжение, пропорциональное скорости вращения вала. Его можно использовать для индикатора скорости или в системе управления скоростью с обратной связью. Тахогенераторы часто используются для питания тахометров для измерения скорости электродвигателей, двигателей и оборудования, которое они питают. Генераторы генерируют напряжение, примерно пропорциональное скорости вала. Благодаря точной конструкции и конструкции генераторы могут быть сконструированы так, чтобы производить очень точные напряжения для определенных диапазонов скоростей вала. [ необходима цитата ]

Эквивалентная схема [ править ]

Эквивалентная схема генератора и нагрузки.
  • G, генератор
  • V G , напряжение холостого хода генератора
  • R G , внутреннее сопротивление генератора
  • V L , напряжение генератора под нагрузкой
  • R L , сопротивление нагрузки

Эквивалентная схема генератора и нагрузки показана на соседней диаграмме. Генератор представляет собой абстрактный генератор, состоящий из идеального источника напряжения и внутреннего импеданса. Параметры генератора и его параметры могут быть определены путем измерения сопротивления обмотки (с поправкой на рабочую температуру ), а также измерения напряжения холостого хода и нагрузки для определенной токовой нагрузки.

Это простейшая модель генератора, для точного представления могут потребоваться дополнительные элементы. В частности, можно добавить индуктивность, чтобы учесть обмотки машины и магнитный поток рассеяния [22], но полное представление может стать гораздо более сложным, чем это. [23]

См. Также [ править ]

  • Дизельный генератор
  • Производство электроэнергии
  • Электрический двигатель
  • Двигатель-генератор
  • Закон индукции Фарадея
  • Газовая турбина
  • Планирование расширения генерации
  • Фактор доброты
  • Паровая турбина
  • Сверхпроводящая электрическая машина
  • Термогенератор

Ссылки [ править ]

  1. ^ Также называется электрическим генератором , электрическим генератором и электромагнитным генератором .
  2. Август Хеллер (2 апреля 1896 г.). "Анианус Едлик" . Природа . Норман Локьер. 53 (1379): 516. Bibcode : 1896Natur..53..516H . DOI : 10.1038 / 053516a0 .
  3. Augustus Heller (2 апреля 1896 г.), «Anianus Jedlik» , Nature , Norman Lockyer, 53 (1379): 516, Bibcode : 1896Natur..53..516H , doi : 10.1038 / 053516a0
  4. ^ Каталог фонда музеев Бирмингема, инвентарный номер: 1889S00044
  5. ^ Томас, Джон Мейриг (1991). Майкл Фарадей и Королевский институт: гений человека и места . Бристоль: Хильгер. п. 51. ISBN 978-0750301459.
  6. Перейти ↑ Beauchamp, KG (1997). Выставка электроэнергии . ИЭПП. п. 90. ISBN 9780852968956.
  7. Перейти ↑ Hunt, LB (март 1973). «Ранняя история позолоты» . Золотой бюллетень . 6 (1): 16–27. DOI : 10.1007 / BF03215178 .
  8. ^ Berliner Berichte . Январь 1867 г. Отсутствует или пусто |title=( справка )
  9. ^ Труды Королевского общества . 14 февраля 1867 г. Отсутствует или пусто |title=( справка )
  10. Schaefer, Richard C. (январь – февраль 2017 г.). «Искусство генераторной синхронизации». IEEE Transactions по отраслевым приложениям . 53 (1): 751–757. DOI : 10.1109 / tia.2016.2602215 . ISSN 0093-9994 . S2CID 15682853 .  
  11. ^ Basler, Майкл Дж .; Шефер, Ричард К. (2008). «Понимание стабильности энергосистемы». IEEE Transactions по отраслевым приложениям . 44 (2): 463–474. DOI : 10.1109 / tia.2008.916726 . ISSN 0093-9994 . S2CID 62801526 .  
  12. ^ Томпсон, Сильванус П., Динамо-электрические машины . стр.7
  13. ^ Блэлок, Томас Дж., « Электрификация переменного тока, 1886 ». Центр истории IEEE, IEEE Milestone. ( ред . первая практическая демонстрация системы генератор постоянного тока - трансформатор переменного тока.)
  14. ^ Ferranti Срок архивации 3 октября 2015, в Wayback Machine - Музей науки и промышленности ( по состоянию на 22.02.2012)
  15. ^ Томпсон, Сильванус П., Динамо-электрические машины . стр.17
  16. ^ Томпсон, Сильванус П., Динамо-электрические машины . стр.16
  17. ^ Losty, HHW & Льюис, DL (1973) Униполярные машины. Философские труды для Лондонского королевского общества. Серия А, Математические и физические науки. 275 (1248), 69-75
  18. ^ Лэнгдон Крейн, Магнитогидродинамический (МГД) генератор энергии: больше энергии за счет меньшего количества топлива, номер выпуска IB74057 , Исследовательская служба Библиотеки Конгресса США, 1981 г., извлечено из Digital.library.unt.edu 18 июля 2008 г.
  19. ^ «Готовность к урагану: защита, обеспечиваемая электрогенераторами | Включение с Марком Ламом» . Wpowerproducts.com. 10 мая 2011г . Проверено 24 августа 2012 .
  20. ↑ « Генераторы исчезли, протестующие с Уолл-стрит пробуют силу на велосипеде» , Колин Мойнихан, New York Times , 30 октября 2011 г .; доступ 2 ноября 2011 г.
  21. ^ «Программа: hpv (обновлено 22.06.11)» . Ohio.edu . Проверено 24 августа 2012 .
  22. ^ Джефф Клемпнер, Исидор Керсенбаум, «1.7.4 Эквивалентная схема», Справочник по эксплуатации и обслуживанию больших турбогенераторов , John Wiley & Sons, 2011 (издание Kindle) ISBN 1118210409 . 
  23. ^ Йошихиде Hase, "10: Теория генераторов", Справочник Power System Engineering , John Wiley & Sons, 2007 ISBN 0470033665 .