Из Википедии, бесплатной энциклопедии
Перейти к навигации Перейти к поиску
MH-60S Sea Hawk в полете
Хвостовой винт для MH-60R Sea Hawk

Вертолет основной ротор или система ротора представляет собой комбинацию из нескольких поворотных крыльев ( лопастей ротора ) и систему управления , которая генерирует аэродинамическую подъемную силу , которая поддерживает вес вертолета и тяги , который противодействует аэродинамическое сопротивление в полете вперед. Каждый несущий винт установлен на вертикальной мачте над верхней частью вертолета, в отличие от хвостового винта вертолета , который соединяется через комбинацию приводных валов и коробок передач вдоль хвостовой балки. Шаг лопастей обычно контролируютсяАппарат перекоса соединен с органами управления вертолетом . Вертолеты являются одним из примеров винтокрылых летательных аппаратов ( винтокрылой ). Название происходит от греческих слов helix , helik-, что означает спираль; а птерон означает крыло.

Принципы дизайна [ править ]

Обзор [ править ]

Несущий винт вертолета приводится в движение двигателем через трансмиссию на вращающуюся мачту. Мачта представляет собой цилиндрический металлический вал, который проходит вверх от трансмиссии и приводится в движение ею. В верхней части мачты находится точка крепления (в просторечии называемая гайкой Иисуса ) для лопастей ротора, называемая ступицей. Затем к ступице прикрепляются лопасти ротора, и ступица может иметь сопротивление в 10-20 раз больше, чем лопасть. [1]Системы несущего винта классифицируются в зависимости от того, как лопасти несущего винта прикреплены и перемещаются относительно ступицы несущего винта. Существует три основных классификации: жесткие, полужесткие и полностью сочлененные, хотя некоторые современные роторные системы используют комбинацию этих классификаций. Ротор - это точно настроенная вращающаяся масса, и различные тонкие регулировки уменьшают вибрации при разных скоростях полета. [2] Роторы предназначены для работы с фиксированной частотой вращения [3] [4] [5] (в узком диапазоне нескольких процентов), [6] [7], но несколько экспериментальных самолетов использовали роторы с регулируемой скоростью . [8]

В отличие от вентиляторов малого диаметра, используемых в турбовентиляторных реактивных двигателях, несущий винт вертолета имеет большой диаметр, что позволяет ему разгонять большой объем воздуха. Это позволяет снизить скорость промывки вниз при заданной величине тяги. Так как на малых скоростях более эффективно на малых скоростях ускорить большое количество воздуха в небольшой степени, чем небольшое количество воздуха в большей степени, [9] [10] низкая нагрузка на диск (тяга на площадь диска) значительно увеличивает энергоэффективность, а это снижает расход топлива и обеспечивает разумный диапазон. [11] [12] Эффективность зависания («добротность») [13] типичного вертолета составляет около 60%. [14]Внутренняя треть длины лопасти ротора очень мало способствует подъемной силе из-за ее низкой воздушной скорости. [10]

Blades [ править ]

Лопасти вертолета - это длинные узкие крылья с большим удлинением , форма которых сводит к минимуму сопротивление концевых вихрей ( для сравнения см. Крылья планера ). Как правило, они содержат степень размыва, которая снижает подъемную силу, создаваемую на концах, где поток воздуха является самым быстрым, и образование вихрей может стать серьезной проблемой. Лопасти ротора изготавливаются из различных материалов, включая алюминий, композитную конструкцию, сталь или титан , с защитой от истирания вдоль передней кромки.

Лопасти винтокрылых машин традиционно пассивны; однако некоторые вертолеты включают в себя активные компоненты на лопастях. В Каман К-MAX использует Закрылки задней кромки лопатки для управления по тангажу и Хиллер YH-32 Hornet был приведен в действие ПВРД , установленных на концах лопаток. По состоянию на 2010 год ведутся исследования по активному управлению лопастями с помощью закрылков задней кромки. [15] Наконечники некоторых лопастей вертолетов могут быть специально сконструированы для уменьшения турбулентности и шума и для обеспечения более эффективного полета. Примером таких наконечников являются наконечники роторов BERP, созданные в рамках британской программы экспериментальных роторов .

Хаб [ править ]

Простой ротор Robinson R22
Головка ротора Robinson R44
Роторная головка Sikorsky S-92

Простой ротор Robinson R22, показывающий (сверху):

  • Следующие приводятся в движение тягами от вращающейся части автомата перекоса .
    • Шаг шарниров, позволяющий лезвиям вращаться вокруг оси, проходящей от основания лезвия до конца лезвия.
  • Шарнир качения, позволяющий одной лопасти подниматься вертикально, а другой опускаться вертикально. Это движение происходит всякий раз, когда присутствует поступательный относительный ветер или в ответ на циклический управляющий сигнал.
  • Ножничное звено и противовес переносят вращение главного вала вниз к верхней наклонной шайбе
  • Резиновые накладки защищают подвижные и неподвижные валы
  • Аппараты автомата перекоса, передающие на лопасти циклический и общий шаг (вращается верхняя)
  • Три невращающихся стержня управления передают информацию о шаге на нижнюю тарелку автомата перекоса.
  • Главная мачта, ведущая к главному редуктору

Полностью сформулированный [ править ]

Схема полностью сочлененной головки несущего винта

Хуан де ла Сьерва разработал полностью шарнирный ротор для автожира . Основа его конструкции позволила успешно создать вертолет. В полностью шарнирно-сочлененной роторной системе каждая лопасть ротора прикреплена к ступице ротора через серию шарниров, которые позволяют лопасти двигаться независимо от других. Эти роторные системы обычно имеют три или более лопастей. Лезвия могут взмахивать, опускаться, опускаться или отставать друг от друга. Горизонтальный шарнир, называемый откидным шарниром , позволяет полотну перемещаться вверх и вниз. Это движение называется взмахами и предназначено для компенсации несимметричности подъемной силы.. Откидывающийся шарнир может быть расположен на различных расстояниях от ступицы ротора, и может быть более одного шарнира. Вертикальный шарнир, называемый опережающим шарниром или тяговым шарниром , позволяет лезвию двигаться вперед и назад. Это движение называется задержкой, перетаскиванием или охотой. Демпферы обычно используются для предотвращения чрезмерного движения вперед и назад вокруг шарнира. Шарнир сопротивления и амортизаторы предназначены для компенсации ускорения и замедления, вызванного разницей в сопротивлении движущихся и отступающих лопастей. Более поздние модели перешли от традиционных подшипников к эластомерным.подшипники. Эластомерные подшипники по своей природе отказоустойчивы, а их износ постепенный и заметный. В этой конструкции исключается контакт металл-металл старых подшипников и необходимость в смазке. Третий шарнир в полностью шарнирно-сочлененной системе называется шарнирным шарниром вокруг оси отклонения. Этот шарнир отвечает за изменение шага лопастей ротора, возбуждаемых посредством пилотного ввода в коллективный или циклический.

Разновидностью полностью сочлененной системы является роторная система с мягким расположением ротора. Этот тип ротора можно найти на нескольких самолетах, производимых Bell Helicopter, таких как OH-58D Kiowa Warrior.. Эта система похожа на полностью сочлененный тип в том, что каждое лезвие имеет возможность вести / отставать и охотиться независимо от других лезвий. Разница между полностью шарнирно-сочлененной системой и системой soft-in-plane заключается в том, что в системе soft-in-plane используется композитная вилка. Эта вилка прикреплена к мачте и проходит через зажимы между лопастями и срезной подшипник внутри рукоятки. Это ярмо передает некоторое движение одного лезвия другому, обычно противоположному. Хотя это не полностью сформулировано, летные характеристики очень похожи, а время и стоимость обслуживания сокращены.

Жесткий [ править ]

Термин «жесткий ротор» обычно относится к бесшарнирной роторной системе [16] [17] с лопастями, гибко прикрепленными к ступице. Ирв Калвер из Lockheed разработал один из первых жестких роторов, который был испытан и разработан на серии вертолетов в 1960-х и 1970-х годах. В жесткой роторной системе каждая лопасть хлопает и волочит гибкие части корня. Жесткая роторная система механически проще, чем полностью сочлененная роторная система. Нагрузки от колебательных движений и сил опережения / запаздывания воспринимаются посредством изгиба лопастей ротора, а не посредством шарниров. Изгибаясь, лезвия сами компенсируют усилия, которые раньше требовали надежных шарниров. В результате роторная система имеет меньшую задержку в ответной реакции из-за обычно генерируемого большого момента ступицы.[18] Таким образом, жесткая роторная система устраняет опасность удара мачты, присущую полужестким роторам. [19]

Полужесткий [ править ]

Система полужесткого ротора

Полужесткий ротор также можно назвать качающимся или качающимся ротором. Эта система обычно состоит из двух лопастей, которые встречаются прямо под общим шарниром на валу ротора. Это позволяет лопастям колебаться вместе в противоположных движениях, как качели . Этот перекос лопастей под шарнир качения в сочетании с адекватным двугранным или коническим углом на лопастях сводит к минимуму отклонения радиуса центра масс каждой лопасти от оси вращения при вращении ротора, что, в свою очередь, снижает нагрузку на лопасти от опережающих и запаздывающих сил, вызванных эффектом Кориолиса. Также могут быть предусмотрены вторичные откидные петли для обеспечения достаточной гибкости для минимизации подпрыгивания. Растушевка достигается за счет шарнира на основании лопасти, который позволяет изменять угол наклона лопасти.

Комбинация [ править ]

Современные роторные системы могут использовать комбинированные принципы роторных систем, упомянутых выше. Некоторые ступицы ротора имеют гибкую ступицу, которая позволяет изгибать лопасти без использования подшипников или шарниров. Эти системы, называемые «прогибами» [20] , обычно изготавливаются из композитного материала. Эластомерные подшипники также могут использоваться вместо обычных роликовых подшипников. Эластомерные подшипники изготовлены из материала резинового типа и обеспечивают ограниченное движение, что идеально подходит для вертолетов. Изгибы и эластомерные подшипники не требуют смазки и, следовательно, требуют меньшего обслуживания. Они также поглощают вибрацию, что снижает утомляемость и увеличивает срок службы компонентов вертолета.

Аппарат перекоса [ править ]

Органы управления изменяют шаг лопастей несущего винта циклически на протяжении всего вращения. Пилот использует это для управления направлением вектора тяги ротора , который определяет ту часть диска ротора, где развивается максимальная тяга. Общий шаг изменяет величину тяги ротора за счет увеличения или уменьшения тяги по всему диску ротора одновременно. Эти изменения шага лопастей контролируются путем наклона, подъема или опускания наклонной шайбы с помощью органов управления полетом. Подавляющее большинство вертолетов поддерживают постоянную скорость вращения несущего винта (об / мин) во время полета, оставляя угол атаки лопастей в качестве единственного средства регулирования тяги от несущего винта.

Качающаяся шайба представляет собой два концентрических диска или пластины. Одна плита вращается с мачтой, соединенной холостыми звеньями, а другая не вращается. Вращающаяся пластина также соединена с отдельными лопастями через промежуточные звенья и ступенчатые выступы. Невращающаяся пластина соединена со звеньями, которыми управляют пилотные органы управления, в частности, коллективное и циклическое управление. Качающаяся пластина может перемещаться по вертикали и наклоняться. Путем смещения и наклона невращающаяся пластина управляет вращающейся пластиной, которая, в свою очередь, регулирует шаг отдельных лопастей.

Flybar (стабилизатор поперечной устойчивости) [ править ]

Ряд инженеров, в том числе Артур М. Янг из США и авиамоделист Дитер Шлютер из Германии, обнаружили, что стабильность полета вертолетов может быть достигнута с помощью стабилизатора поперечной устойчивости или флайбара. Флайбар имеет на каждом конце груз или лопасти (или и то, и другое для дополнительной устойчивости на меньших вертолетах) для поддержания постоянной плоскости вращения. Благодаря механическим связям стабильное вращение штанги смешивается с движением наклонной шайбы для гашения внутренних (рулевых), а также внешних (ветровых) сил на ротор. Это облегчает пилоту контроль над самолетом. Стэнли Хиллерпришли к аналогичному методу для улучшения устойчивости, добавив короткие короткие аэродинамические поверхности или лопасти на каждом конце. Однако система "Rotormatic" Хиллера также передавала циклические управляющие сигналы на главный ротор в качестве своего рода управляющего ротора, а лопасти обеспечивали дополнительную стабильность за счет гашения воздействия внешних сил на ротор.

В роторной системе Lockheed использовался управляющий гироскоп, аналогичный по принципу действия стабилизатора поперечной устойчивости Bell, но разработанный как для обеспечения устойчивости при автоматическом отключении, так и для быстрой реакции управления бесшарнирной роторной системой.

В электрических вертолетах или моделях RC микроконтроллер с датчиками гироскопа и датчиком Вентури могут заменить стабилизатор. Эта конструкция без флайбара имеет преимущество, заключающееся в легкой реконфигурации и меньшем количестве механических деталей. Хотя настоящий вертолет с дистанционным управлением с флайбаром должен держать гироскоп на каждой оси.

Медленный ротор [ править ]

Большинство роторов вертолетов вращаются с постоянной скоростью. Однако замедление ротора в некоторых ситуациях может принести пользу.

По мере увеличения поступательной скорости скорость движущегося конца ротора вскоре приближается к скорости звука. Чтобы уменьшить проблему, можно снизить скорость вращения, что позволит вертолету лететь быстрее.

Чтобы отрегулировать подъем ротора на более низких скоростях, в традиционной конструкции угол атаки лопастей ротора уменьшается за счет управления общим шагом. Вместо этого замедление ротора может снизить лобовое сопротивление на этом этапе полета и, таким образом, улучшить экономию топлива.

Конфигурации ротора [ править ]

Большинство вертолетов имеют один несущий винт, но для преодоления крутящего момента требуется отдельный ротор. Это достигается за счет противоточного или рулевого винта с регулируемым шагом. Это дизайн, который Игорь Сикорский выбрал для своего вертолета VS-300 , и он стал признанным условием для проектирования вертолетов, хотя конструкции действительно различаются. Если смотреть сверху, подавляющее большинство несущих винтов вертолетов вращаются против часовой стрелки; винты французских и российских вертолетов вращаются по часовой стрелке.

Один несущий винт [ править ]

Antitorque : эффект крутящего момента на вертолете

В вертолете с одним несущим винтом создание крутящего момента при вращении двигателя ротором создает эффект крутящего момента, который заставляет корпус вертолета поворачиваться в направлении, противоположном ротору. Чтобы устранить этот эффект, необходимо использовать какое-то противодействие крутящему моменту с достаточным запасом мощности, чтобы вертолет мог удерживать свой курс и обеспечивать контроль рыскания. Три наиболее распространенные элементы управления , используемых на сегодняшний день являются хвостовым ротором, компании Eurocopter фенестрон (также называется юте ) и MD Helicopters " NOTAR .

Хвостовой винт [ править ]

Хвостовой винт SA 330 Puma

Хвостовой винт - это меньший по размеру ротор, установленный так, что он вращается вертикально или почти вертикально на конце хвостовой части традиционного одновинтового вертолета. Положение хвостового винта и расстояние от центра тяжести позволяют ему развивать тягу в направлении, противоположном вращению несущего винта, чтобы противостоять эффекту крутящего момента, создаваемому несущим винтом. Хвостовые винты проще основных роторов, поскольку для изменения тяги им требуется только общее изменение шага. Шаг лопастей рулевого винта регулируется пилотом с помощью педалей против крутящего момента, которые также обеспечивают управление направлением, позволяя пилоту вращать вертолет вокруг его вертикальной оси, тем самым изменяя направление движения летательного аппарата.

Канальный вентилятор [ править ]

Фенестрон на EC 120B

Фенестрон и Fantail [21] являются товарными знаками для импеллера , установленные на конце хвостовой балки вертолета и используются вместо хвостового винта. Канальные вентиляторы имеют от восьми до восемнадцати лопастей, расположенных с неравномерным шагом, так что шум распределяется по разным частотам. Корпус выполнен за одно целое с обшивкой самолета и обеспечивает высокую скорость вращения; Следовательно, канальный вентилятор может иметь меньшие размеры, чем обычный хвостовой винт.

Фенестрон впервые был использован в конце 1960-х годов на второй экспериментальной модели SA 340 Sud Aviation и произведен на более поздней модели Aérospatiale SA 341 Gazelle . Кроме того , Eurocopter и его предшественники, обтекатель вентилятор хвостового ротор был также использован на отмененном проекте военного вертолета, то армия Соединенных Штатов «s RAH-66 Comanche , как юте.

НОТАР [ править ]

Схема, показывающая движение воздуха через систему NOTAR

NOTAR, аббревиатура от NO TA il R otor , представляет собой систему противодействия крутящему моменту вертолета, которая исключает использование рулевого винта на вертолете. Хотя на уточнение концепции потребовалось некоторое время, система NOTAR проста в теории и обеспечивает противодействие движению так же, как крыло развивает подъемную силу, используя эффект Коанды . [22]Вентилятор с регулируемым шагом расположен в задней части фюзеляжа непосредственно перед хвостовой балкой и приводится в действие трансмиссией несущего винта. Чтобы обеспечить боковую силу для противодействия крутящему моменту по часовой стрелке, создаваемому вращающимся против часовой стрелки основным ротором (если смотреть сверху основного ротора), вентилятор с регулируемым шагом нагнетает воздух низкого давления через две прорези на правой стороне задней балки, вызывая промывка вниз от основного ротора, чтобы охватить хвостовую балку, создавая подъемную силу и, таким образом, меру противодействия, пропорциональную количеству воздушного потока от промывки ротора. Это дополняется реактивным двигателем прямого действия, который также обеспечивает направленное управление рысканием, с наличием оперения с неподвижной поверхностью около конца хвостового оперения, включая вертикальные стабилизаторы.

Разработка системы NOTAR началась в 1975 году, когда инженеры Hughes Helicopters приступили к разработке концепции. [22] В декабре 1981 года Хьюз впервые пилотировал OH-6A, оборудованный NOTAR. [23] Более сильно модифицированный опытный образец-демонстратор впервые поднялся в воздух в марте 1986 года и успешно завершил расширенную программу летных испытаний, проверив систему для будущего применения в конструкции вертолетов. [24] В настоящее время существует три серийных вертолета с дизайном NOTAR, все они производятся MD Helicopters. Эта конструкция с защитой от трения также повышает безопасность, исключая возможность попадания персонала в хвостовой винт.

Предшественник (своего рода) этой системы существовал в виде британского вертолета Cierva W.9 , самолета конца 1940-х годов, использующего охлаждающий вентилятор от поршневого двигателя для проталкивания воздуха через сопло, встроенное в хвостовую балку, для противодействия крутящему моменту ротора. [25]

Типовые форсунки [ править ]

Главный ротор может приводиться в движение соплами. Такая система может работать от воздуха под высоким давлением, подаваемого компрессором. Воздух может смешиваться или не смешиваться с топливом и сжигаться в реактивных двигателях, импульсных реактивных двигателях или ракетах. Хотя этот метод прост и исключает реакцию крутящего момента, созданные прототипы менее экономичны, чем обычные вертолеты. За исключением сопел, приводимых в действие несгоревшим сжатым воздухом, очень высокий уровень шума является единственной наиболее важной причиной, по которой роторы с приводом на сопло не получили широкого распространения. Однако исследования по подавлению шума продолжаются, и они могут помочь сделать эту систему жизнеспособной.

Есть несколько примеров винтокрылых аппаратов с реактивным двигателем. Персиваль стр.74 был маломощный и не мог летать. Хиллер YH-32 Hornet имел хорошую возможность подъема , но малоэффективная иначе. Другие самолеты использовали вспомогательную тягу для поступательного полета, так что концевые жиклеры могли отключаться при авторотации несущего винта. Экспериментальные Fairey Jet Gyrodyne , 48-местные пассажирские прототипы Fairey Rotodyne и составные автожиры McDonnell XV-1 хорошо летали с использованием этого метода. Пожалуй, самой необычной конструкцией этого типа был вездеход Rotary Rocket Roton , который изначально планировался для взлета с помощью ракетного винта. Французский Sud-Ouest Djinnиспользовал несгоревший сжатый воздух для привода ротора, что минимизировало шум и помогло ему стать единственным вертолетом с водометным приводом, запущенным в производство. У Hughes XH-17 был концевой винт с реактивным приводом, который остается самым большим винтом, когда-либо установленным на вертолете.

Двойные роторы [ править ]

Сдвоенные роторы вращаются в противоположных направлениях, чтобы противодействовать влиянию крутящего момента на самолет, не полагаясь на рулевой винт с противовращением. Это позволяет летательному аппарату применять мощность, которая приводила бы в движение хвостовой винт, к основным несущим винтам, увеличивая грузоподъемность. В первую очередь, три распространенные конфигурации используют эффект встречного вращения винтокрылого аппарата. Тандемные роторы - это два ротора, установленных один за другим. Коаксиальные роторы - это два ротора, установленных друг над другом на одной оси. Роторы в зацеплениипредставляют собой два винта, установленные близко друг к другу под достаточным углом, чтобы роторы могли зацепляться над верхней частью самолета. Другая конфигурация, встречающаяся на конвертопланах и некоторых ранних вертолетах, называется поперечными несущими винтами, где по паре несущих винтов установлены на каждом конце конструкции крыла или аутригера.

Тандем [ править ]

Боинг CH-47 Чинук

Тандемные роторы представляют собой два горизонтальных узла несущих винтов, установленных один за другим. Тандем роторы достичь высоты тона отношенияизменяется для ускорения и замедления вертолета посредством процесса, называемого циклическим шагом. Для наклона вперед и ускорения оба ротора увеличивают шаг сзади и уменьшают шаг вперед (циклически), сохраняя одинаковый крутящий момент на обоих роторах, полет вбок достигается за счет увеличения шага с одной стороны и уменьшения шага с другой. Контроль рыскания достигается за счет противоположного циклического шага каждого ротора. Для поворота вправо передний ротор наклоняется вправо, а задний ротор наклоняется влево. При повороте влево передний ротор наклоняется влево, а задний ротор - вправо. Вся мощность ротора способствует подъемной силе, и легче справиться с изменениями центра тяжести в продольном направлении. Однако это требует затрат на два больших винта, а не на один большой несущий винт и хвостовой винт гораздо меньшего размера. Боинг CH-47 Чинук Самый распространенный вертолет с тандемным винтом.

Коаксиальный [ править ]

Камов Ка-50 ВВС России, соосные винты

Коаксиальные роторы - это пара роторов, установленных друг над другом на одном валу и вращающихся в противоположных направлениях. Преимущество соосного ротора состоит в том, что при полете вперед подъемная сила, обеспечиваемая продвигающимися половинами каждого ротора, компенсирует отступающую половину другой, устраняя один из ключевых эффектов несимметрии подъемной силы: срыв лопастей . Однако коаксиальным роторам мешают другие конструктивные особенности. Существует повышенная механическая сложность роторной системы, поскольку для двух роторных систем требуются рычаги и наклонные шайбы . Кроме того, поскольку роторы должны вращаться в противоположных направлениях, мачта является более сложной, и рычаги управления для изменения шага в системе верхнего ротора должны проходить через систему нижнего ротора.

Взаимодействие [ править ]

HH-43 Хаски

Сцепляющиеся винты на вертолете представляют собой набор из двух роторов, вращающихся в противоположных направлениях, при этом каждая мачта несущего винта установлена ​​на вертолете под небольшим углом друг к другу, так что лопасти сцепляются без столкновения. Эту конфигурацию иногда называют синхроптером. Роторы с взаимным зацеплением обладают высокой стабильностью и высокой грузоподъемностью. Эта конструкция была впервые применена в нацистской Германии в 1939 году с успешным проектом Антона Флеттнера Flettner Fl 265 , а затем запущена в ограниченное производство как успешный Flettner Fl 282 Kolibri , который использовался немецкой Kriegsmarine в небольших количествах (произведено 24 планера) в качестве экспериментального. легкий противолодочный вертолет. ВовремяАмериканская компания « Холодная война» Kaman Aircraft произвела HH-43 Huskie для пожарных и спасательных операций ВВС США . Последняя модель Kaman, Kaman K-MAX , представляет собой особый дизайн небесного крана.

Поперечный [ править ]

Ми-12

Поперечные несущие винты устанавливаются на концах крыльев или аутригерах перпендикулярно корпусу самолета. Подобно тандемным роторам и роторам с зацеплением, поперечный ротор также использует дифференциальный общий шаг. Но, как и роторы с зацеплением, поперечные роторы используют концепцию изменения положения винтокрылого аппарата по крену. Эта конфигурация используется на двух из первых жизнеспособных вертолетов, Focke-Wulf Fw 61 и Focke-Achgelis Fa 223 , а также на самом большом в мире вертолете, когда-либо построенном, Mil Mi-12 . Такая же конфигурация используется на конвертопланах, таких как Bell-Boeing V-22 Osprey и AgustaWestland AW609 .

Счетверенный ротор [ править ]

Этьен Омихен, Париж, Франция, 1921 г. Источник

Вертолет де Ботеза , 1923 год.

Четырехъядерный ротор или quadrotor состоит из четырех роторов в конфигурации «X». Роторы слева и справа имеют поперечную конфигурацию, а роторы спереди и сзади - тандемную.

Преимущество четырехвинтовой техники на небольших самолетах, таких как дроны, заключается в простоте механики. У квадрокоптера с электродвигателями и роторами фиксированного шага всего четыре движущихся части. Угол наклона, рыскания и крена можно контролировать, изменяя относительную подъемную силу различных пар роторов без изменения общего подъема. [26]

Два семейства профилей:

  • симметричные профили
  • асимметричные профили

Симметричные лопасти очень устойчивы, что помогает свести к минимуму скручивание лопастей и нагрузку на управление полетом. Эта стабильность достигается за счет того, что центр давления остается практически неизменным при изменении угла атаки. Центр давления - это воображаемая точка на линии хорды, в которой, как считается, сосредоточена равнодействующая всех аэродинамических сил. Сегодня конструкторы используют более тонкие аэродинамические поверхности и получают необходимую жесткость за счет использования композитных материалов.

Кроме того, некоторые аэродинамические поверхности имеют асимметричную конструкцию, что означает, что верхняя и нижняя поверхности не имеют одинаковый изгиб. Обычно эти аэродинамические поверхности не были бы такими устойчивыми, но это можно исправить, изогнув заднюю кромку, чтобы получить те же характеристики, что и симметричные аэродинамические поверхности. Это называется «рефлексией». Использование этого типа лопастей ротора позволяет роторной системе работать на более высоких скоростях движения. Одна из причин, по которой асимметричная лопасть ротора не так стабильна, заключается в том, что центр давления изменяется с изменением угла атаки. Когда центр подъемной силы давления находится за точкой поворота на лопасти ротора, это имеет тенденцию вызывать подъем диска ротора. По мере увеличения угла атаки центр давления перемещается вперед. Если он движется впереди точки поворота, шаг диска ротора уменьшается.Поскольку угол атаки лопастей ротора постоянно меняется в течение каждого цикла вращения, лопасти имеют тенденцию в большей степени хлопать, опускаться, опережать и отставать.[27]

Ограничения и опасности [ править ]

Вертолеты с качающимися несущими винтами - например, система с двумя лопастями на Bell , Robinson и других - не должны подвергаться условиям низкого ускорения, поскольку такие системы несущих винтов не контролируют положение фюзеляжа. Это может привести к тому, что фюзеляж займет положение, управляемое импульсом и тяговым усилием рулевого винта, которое заставит хвостовую балку пересекать плоскость траектории кончика несущего винта или приведет к контакту хвостовика лопастей с приводным валом несущего винта, в результате чего лопасти отделяются от ведущего вала несущего винта. ступица (удар мачты). [28]

Истирание в песчаной среде [ править ]

Эффект Коппа – Этчеллса

При работе в песчаных условиях песок, ударяясь о движущиеся лопасти ротора, разъедает их поверхность. Это может повредить роторы и вызвать серьезные и дорогостоящие проблемы с обслуживанием. [29]

Абразивные полосы на лопастях винта вертолетов сделаны из металла, часто из титана или никеля , которые очень твердые, но менее твердые, чем песок. Когда вертолет низко летит над землей в пустыне, попадание песка на лопасти винта может вызвать эрозию. Ночью попадание песка на металлическую полосу истирания вызывает видимую корону или ореол вокруг лопастей ротора. Эффект вызван пирофорным окислением эродированных частиц и триболюминесценцией [ цитата необходима ], в результате чего столкновение с частицами песка производит фотолюминесценцию. [30] [31] [32]

Боевой фотограф и журналист Майкл Йон наблюдал за этим эффектом, сопровождая американских солдат в Афганистане. Когда он обнаружил, что у эффекта нет названия, он придумал название эффекта Коппа-Этчелла в честь двух солдат, погибших на войне, одного американца и одного британца. [33]

История [ править ]

Украшенный японский бамбуковый вертолет такэтомбо . Игрушка состоит из ротора, прикрепленного к палке.
Первый автожир, который успешно летал в 1923 году, изобрел Хуан де ла Сьерва .

Использование винта для вертикального полета существует с 400 г. до н.э. в виде бамбукового вертолета , древней китайской игрушки. [34] [35] Бамбуковый вертолет вращается путем вращения палки, прикрепленной к ротору. Вращение создает подъемную силу, и игрушка летит, когда ее отпускают. [34] Книга философа Гэ Хун « Баопузы» (Мастер, признающая простоту), написанная около 317 г., описывает апокрифическое использование возможного ротора в самолетах: «Некоторые сделали летающие машины [feiche 飛車] из дерева с внутренней стороны. дерева мармелад, используя бычью кожу (ремни), прикрепленные к возвращающимся лезвиям, чтобы привести машину в движение ". [36] Леонардо да Винчиразработал машину, известную как «воздушный винт» с ротором на основе водяного винта . Российский эрудит Михаил Ломоносов разработал ротор на основе китайской игрушки. Французский натуралист Кристиан де Лонуа сконструировал свой ротор из индюшачьих перьев. [34] Сэр Джордж Кэли , вдохновленный китайской игрушкой в ​​детстве, создал несколько вертикальных летательных аппаратов с роторами из жестяных листов. [34] Альфонс Пено позже разработал игрушечные вертолеты соосным ротором в 1870 году, приводимые в движение резиновыми лентами. Одна из этих игрушек, подаренная их отцом, вдохновила братьев Райт на осуществление мечты о полете. [37]

До разработки в середине 20 века вертолетов с двигателем пионер автожира Хуан де ла Сьерва исследовал и разработал многие основы винта. Де ла Сьерве приписывают успешную разработку многолопастных, полностью сочлененных роторных систем. Эта система в ее различных модифицированных формах является основой большинства многолопастных винтовых систем вертолетов.

В первой успешной попытке создания вертолета с одинарным несущим винтом использовался четырехлопастной несущий винт, разработанный советскими авиационными инженерами Борисом Н. Юрьевым и Алексеем М. Черемухиным, работающими в Центральном аэрогидродинамическом институте (ЦАГИ, Центральный аэрогидродинамический институт). ) Под Москвой в начале 1930-х гг. Их вертолет ЦАГИ 1-ЕА смог совершить полеты на малых высотах в 1931–1932 годах, а к середине августа 1932 года Черемухин пролетел на нем на высоте 605 метров (1985 футов) [38] [39].

В 1930-х годах Артур Янг улучшил устойчивость двухлопастных роторных систем с помощью стабилизатора поперечной устойчивости. Эта система использовалась в нескольких моделях вертолетов Bell и Hiller . Вариант системы Hiller с использованием лопастей с лопастями на концах флайбара использовался во многих самых ранних конструкциях моделей вертолетов с дистанционным управлением , начиная с 1970-х годов и до самого начала 21 века.

В конце 1940-х годов изготовление лопастей винта вертолетов вдохновило Джона Т. Парсонса на то, чтобы он стал пионером в области числового управления (ЧПУ). ЧПУ и ЧПУ оказались важной новой технологией, которая позже повлияла на все обрабатывающие отрасли.

Ссылки [ править ]

  1. ^ Харрис, Франклин Д. « Характеристики ротора при высоком передаточном числе: теория по сравнению с испытаниями, архивировано 18 февраля 2013 г.на Wayback Machine », стр. 119 NASA / CR — 2008–215370, октябрь 2008 г. Доступ: 13 апреля 2014 г.
  2. ^ Глава, Элан (апрель 2015 г.). «Лучшая трасса и баланс» . Вертикальный журнал . п. 38. Архивировано из оригинала 11 апреля 2015 года . Проверено 11 апреля 2015 года .
  3. ^ Краучер, Фил. Обучение профессионального пилота вертолета стр. 2-11. ISBN 978-0-9780269-0-5 . Цитата: [Скорость ротора] «в вертолете постоянна». 
  4. ^ Седдон, Джон; Ньюман, Саймон (2011). Основы аэродинамики вертолета . Джон Уайли и сыновья. п. 216. ISBN. 1-119-99410-1. Ротор лучше всего обслуживается вращением с постоянной скоростью ротора.
  5. ^ Роберт Бекхузен. « Армия Сплин Всевидящее Измельчитель Drone » Проводная 25 июня 2012 года Достигано: 12 октября 2013 г. Дата архивации 22 апреля 2015 Сообщений: Число оборотов в минуту также устанавливается по фиксированной ставке
  6. ^ В UH-60 разрешений 95-101% оборотов несущего винта UH-60 Пределы Заархивированные 2016-08-18 на Вайбак машины армии США авиации . Доступ: 2 января 2010 г.
  7. Тримбл, Стивен (3 июля 2008 г.). «Беспилотный вертолет DARPA Hummingbird достиг совершеннолетия» . FlightGlobal . Архивировано из оригинального 14 мая 2014 года . Дата обращения 14 мая 2014 . Скорость несущего винта типичного вертолета может варьироваться в пределах 95-102%.
  8. ^ Датта, Анубхав и др. Экспериментальное исследование и фундаментальное понимание замедленного ротора UH-60A при высоких передаточных числахстр. 2. NASA ARC-E-DAA-TN3233, 2011. Заголовок просмотрен : май 2014 г. Размер: 26 страниц в 2 МБ
  9. ^ Пол Bevilaqua  : Вал ведомого Lift вентилятор двигательная установка для Joint Strike Fighter Архивированных 2011-06-05 в Вайбаке машине странице 3. Представлена 1 май 1997 года DTIC.MIL документа Word, 5,5 MB. Доступ: 25 февраля 2012 г.
  10. ^ a b Бенсен, Игорь . « Как они летают, - объясняет Бенсен всем » Gyrocopters UK . Доступ: 10 апреля 2014 г.
  11. ^ Джонсон, Уэйн. Теория вертолета, стр. 3 + 32, Courier Dover Publications , 1980.Дата обращения: 25 февраля 2012 г. ISBN 0-486-68230-7 
  12. ^ Веслав Зенон Степневски, CN Keys. Аэродинамика винтокрыла, стр. 3 , Courier Dover Publications , 1979. Проверено: 25 февраля 2012 г. ISBN 0-486-64647-5 
  13. ^ Джексон, Дэйв. Юникоптер " Рисунок заслуг ", 16 декабря 2011 г. Дата обращения : 22 мая 2015 г. Архивировано 26 ноября 2013 г.
  14. ^ Уиттл, Ричард. « Это птица! Это самолет! Нет, это самолет, который летает, как птица!» Архивировано 01 мая 2015 г. в Wayback Machine « Breaking Defense , 12 января 2015 г.Дата обращения: 17 января 2015 г.
  15. ^ Mangeot et al. Новые приводы для аэрокосмической отрасли. Архивировано 14 июля 2011 г. на Wayback Machine Noliac . Дата обращения: 28 сентября 2010.
  16. Лэндис, Тони и Дженкинс, Деннис Р. Локхид AH-56A Cheyenne - WarbirdTech Volume 27 , p.5. Specialty Press, 2000. ISBN 1-58007-027-2 . 
  17. ^ «Модель 286» . Архивировано из оригинала на 2016-03-04 . Проверено 7 июля 2010 .
  18. Connor, R. Lockheed CL-475 " . Смитсоновский национальный музей авиации и космонавтики. Пересмотрено 15 августа 2002 г. Доступно на сайте archive.org 3 сентября 2007 г. Исходная ссылка. Архивировано 7 июля2007 г.на Wayback Machine .
  19. ^ Кокс, Тейлор. «Лезвия и подъемник» . Helis.com. Дата обращения: 10 марта 2007 г.
  20. ^ Служба стандартов полета FAA 2001
  21. ^ Альпман, Эмре и Лонг, Лайл Н. "Понимание Antitorque и направленного управления канальным ротором: Характеристики Часть II: Нестабильное моделирование". Архивировано 2 апреля 2015 года в Wayback Machine Journal of Aircraft Vol. 41, № 6, ноябрь – декабрь 2004 г.
  22. ^ а б Фроули 2003, стр. 151.
  23. ^ «Флот НОТАРА отмечает 500 000 летных часов» . Американское вертолетное общество. Дата обращения: 25 февраля 2007 г.
  24. «Журнал Boeing: 1983-1987» . Boeing.com. Дата обращения: 25 февраля 2007 г.
  25. ^ "Cierva" , рейс : 340, 17 апреля 1947
  26. ^ Маркус Вайбель. "Квадрокоптер, Гексакоптер, Октокоптер ... БПЛА" . IEEE Spectrum, 19 февраля 2010 г.
  27. ^ "Руководство по полетам на винтокрыле", стр. 2-1. FAA
  28. ^ Справочник по пилотированию винтокрылых машин (PDF) . Типография правительства США, Вашингтон, округ Колумбия: Федеральное управление гражданской авиации США . 2000. С. 11–10. ISBN  1-56027-404-2. FAA-8083-21. Архивировано из оригинального (PDF) 06.06.2011.
  29. ^ Джим Боун (февраль 2004). «Эти ботинки созданы для полетов: лопасти ротора получили новые защитные экраны» . Журнал RDECOM . Командование по исследованиям, разработкам и инженерным разработкам армии США (временно). Архивировано из оригинала на 2009-09-18 . Проверено 4 сентября 2009 . «Эффект короны» характеризуется характерными светящимися кольцами вдоль металлических или стекловолоконных лопастей ротора, работающих в условиях пустыни.
  30. ^ Мамедов, РК; Мамалимов, Р.И.; Веттегрен В.И.; Щербаков, ИП (2009-06-01). «Временная механолюминесценция оптических материалов». Журнал оптических технологий . 76 (6): 323. DOI : 10,1364 / jot.76.000323 .
  31. ^ Уоррен (Энди) Томас; Шек К. Хонг; Чин-Джай (Майк) Ю; Эдвин Л. Розенцвейг (27 мая 2009 г.). «Улучшенная защита от эрозии лопастей винта: доклад, представленный на 65-м ежегодном форуме Американского вертолетного общества, Грейпвайн, Техас, 27–29 мая 2009 г.» (PDF) . Американское вертолетное общество . Архивировано из оригинального (PDF) 20 июня 2010 года . Проверено 2 сентября 2009 . Второстепенная проблема с эрозией металлических полос абразивного истирания относится к видимой сигнатуре, которая возникает ... вызывая эффект короны в песчаных средах.
  32. ^ "Объявление широкого агентства военно-морских исследований (BAA): Усовершенствованная защита от эрозии лопастей винта вертолета" (PDF) . Департамент военно-морского флота США, Управление военно-морских исследований: 3. BAA 08-011. Архивировано из оригинального (PDF) 11 июля 2009 года . Проверено 2 сентября 2009 . Не менее важная проблема, связанная с защитой Ti, заключается в том, что в ночное время вокруг лопастей ротора образуется видимая корона или гало из-за попадания песка на переднюю кромку Ti, вызывающего искрение и окисление Ti. Цитировать журнал требует |journal=( помощь )
  33. ^ «Как боевой фотограф назвал феномен в честь солдат» . petapixel.com . Проверено 14 апреля 2020 года .
  34. ^ а б в г Лейшман, Дж. Гордон. Основы аэродинамики вертолетов . Кембриджская аэрокосмическая серия, 18. Кембридж: Издательство Кембриджского университета , 2006. ISBN 978-0-521-85860-1 . С. 7-9. Веб-отрывок, заархивированный 13 июля 2014 г., на Wayback Machine. 
  35. ^ Взлетая: Изобретая Aerial Возраст от Античности в течение первой мировой войны . Издательство Оксфордского университета. 8 мая 2003 г. стр.  22 -23. ISBN 978-0-19-516035-2.
  36. ^ Джозеф Нидхэм (1965), Наука и цивилизация в Китае: Физика и физические технологии, Машиностроение Том 4, Часть 2, стр. 583-587.
  37. ^ Джон Д. Андерсон (2004). Изобретая полет: братья Райт и их предшественники . JHU Press. п. 35. ISBN 978-0-8018-6875-7.
  38. ^ видео .
  39. ^ Савин, Александр. «ЦАГИ 1-ЭА». ctrl-c.liu.se, 24 марта 1997 г., дата обращения 12 декабря 2010 г.

Внешние ссылки [ править ]

  • Анализ ротора - теория импульса элемента лопасти
  • Вертолетная головка крупным планом галерея изображений
  • «Вертолетный самолет» . Патент США 2368698 на изобретение флайбара, Артур Янг.